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IFOREWORD

This document supersedes the previous AFOSR Scientific Report cited
below. The present report contains a number of improvements in the numerical

methods used, and is applicable to a wider range of blade geometries. In addi-

tion, a number of errors in Ref. 1 have been corrected, and more complete

descriptions are given for certain features of the method.

The author is very indebted to Joseph P. Nenni, John R. Moselle, and

Marcia J. Williams for their assistance in the development of this program.
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ABSTRACT

This report contains the description of a computer program for evalu-

ating the Ives transformation, which maps a cascade of turbine or compressor

blades conformally into a rectangle.
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Section 1

INTRODUCTION

Some of the most important recent advances in computational fluid

dynamics have ')een made possible by the use of algorithms which solve the

equations of motion in boundary-conforming coordinates. Thus the development

of methods for carrying out these coordinate transformations has received

considerable attention (see, for example, Reference 2). The methods in current

use can be divided into three categories: those which apply algebraic shearing

or stretching of the coordinates, those which are generated numerically by

solving a Poisson equation, and those which are based on a conformal transforma-

tion.

This report is concerned with one example from the third category,

namely the transformation introduced by Ives and Liutermoza. It is capable

of transforming a cascade of airfoils into a rectangle, thus facilitating the

application of the solution algorithms mentioned above. The content of this

report is a review of the transformation itself, together with a practical

I numerical procedure for applying it to a given cascade. This procedure in-

volves a number of choices, involving branch-point locations, tolerances for

Ivarious iteration sequences, and formulas for the evaluation of certain special
functions.

Section 2 below contains a description of the transformation itself,

rincluding modifications that enable the mapping of blades having a rounded
trailing edge, md the calculation of grids in which one of the coordinate lines

joins the trailing edge to the point at downstream infinity.4

2. Thompson, J.F., ed., Numerical Grid Generation, Elsevier Science
Publishing Co., New York (1982).

3. Ives, D.C. and Liutermoza, J.F., "Analysis of Transonic Cascade Flow
Using Conformal Mapping and Relaxation Techniques", AIAA Journal 15
(1977), pp. 647-652.

4. Rae, W.J., "Modifications of the Ives-Liutermoza Conformal-Mapping
Procedure for Turbomachinery Cascades", ASME Paper 83-GT-116 (March 1983).

IL 0



The final sections contain a description of the computer code andcomments on its range of applicability.
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I
jSection 2

CONFORMAL TRANSFORMATION METHOD

The method of Ives & Liutermoza consists of a sequence of transforma-

tions, which map a two-dimensional cascade into a rectangle. The notation and

coordinate system used to define the cascade are shown in Fig. 1. The X.-co-

ordinate is measured in the axial direction, and I is perpendicular to X

IT5
ZZ N ZTE S

ZLE

Figure 1. Coordinate System

The quantities s ,rL and the angle 'denote the "streamwise, normal" coordinates,

in terms of which the blade profiles are sometimes defined. These reduce to

the C, I set if J4 is taken as zero. The origins-of both of these coordinate

systems are arbitrary.

fThese coordinates define a complex variable A

Z - (2-1)

The points ZN and ZT are taken anywhere near the centers of curvature of the

leading and trailing edges, while ZLE and ZTE are points which divide the

"pressure" side of the blade (i.e., its concave surface) from the "suction"

side (its convex surface). These points can be chosen anywhere on the

Actually, H must not be set identically equal to zero, but to the value 10-9
where the ± signs apply to compressors or turbines, respectively.

3
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leading- and trailing-edge contours; ZTE is the point that will be connected

to the "point" at downstream infinity by one of the grid lines, if that option

is chosen (i.e., ISHEAR=I).

For the case of a sharp trailing edge (ITE=O), ZT must equal ZTE,

and for a sharp leading edge (ILE=O), ZN must equal ZLE. The included angle

at a sharp trailing edge, T , must be specified. This is illustrated in
5Fig. 2, for the cascade used by Rae and Homicz.

,\r

ZL E

Figure 2. Blade Geometry of Ref. 5

This blade row has a slant-gap/axial chord ratio SG/C4= 1 , where SC is the

slant gap:

S. Rae, W.J., and Homicz, G.F., "A Rectangular-Coordinate Method for
Calculating Nonlinear Transonic Potential Flowfields in Compressor ii
Cascades", AIAA Paper 78-248 (January 1978).

4[1
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SG = (2-2)

and a stagger angle Y of 32.910. This geometry is used, below, to illustrate

the steps in the Ives transformation. A comparable set of illustrations, for

a cascade of turbine blades with rounded trailing edges, is given in Ref. 4.

Figure 2 shows the relation between the trailing-edge angle Z and an

exponent EX (which is used in one of the transformation steps described below).

This relation applies only for a sharp trailing edge. For a rounded trailing

j edge, fx is not related to the 180-degree trailing-edge angle, but is chosen

as a number in the range 0.2 to 0.4, as described below.

IThe blade shape is input as two tables of coordinate pairs, one for

the pressure surface, and one for the suction surface. These coordinates, plus

the leading- and trailing-edge points ZLE and ZTE are then arranged in an array

indexed by KJ, where KJ=l at the trailing edge, and where the numbering pro-

ceeds around the pressure side to the leading edge (KJLE), and then along the

suction side to the trailing edge, where the point denoted by KJMX is a repeat

of that denoted by KJ=I. This notation is shown in Fig. 3.

LE -

I; (KJ = KJLE) E

Figure 3. Notation for Blade-Surface Coordinates

The quantities KJS and KJP need not be equal; they are limited to a maximum

value of 80 by a dimension statement in the current version of the program.

F. The first step in the Ives transformation is

[ ,



~(1 14 +_ j_ _ _ 42_ (2-3)

___-V TrA: 3 4+

The fact that only differences of h -values are used is what account or the

arbitrariness of the origin in Fig. 1. On the suction ( 5 ) and pre le ( P )
sides, the function J(Z) has the Fortran equivalents::

I D5 (K) e " rMs (K)
R DP (K)e V ((2

The arguments of the sine functions can be written in a simpler form,

as follows: 2z (H1-iG)

(22

', S r f RA

+ i [J. AZ . RP, A. , -co (2-5)

where Ar stands for I-.. or Z-2, in the expressions for 4, and 43 respectively.

By noting that (see Fig. 4)

- 1

Figure 4. Coordinate Relations
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it follows that

7rC

- -}
Similarly,

- --- (x-X.) (2-7)

The sine transformations:

42' 4, 43
map the strip - 7T/2 R- 3 , < +7T/2 into the entire 4a (or' )
plane, with cuts along the real axis from - to -1 and from +1 to4-:

J V J , E 4 21

/ ._

/c~~~ /, ReC] R!

/

e d

Figure S. The Mapping gz = .A- 4,

77

_ -- _
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In order to enforce this single-valuedness, the argument of the sine function

should be displaced by the appropriate multiple of 14 I i , whenever the

real part of its argument falls outside the strip noted above, i.e., if

Re > f then set 4 - (4+nTr)-Tr, where n is chosen so as to make2'

I Re ( P Tr) 7 r -. It turns out, however, that this displacement of the

argument need not be made explicitly, when evaluating the complex sine. This

can be seen by noting that

AA(Re ) - .6 (R6c.or) a. (RA .) ( e.

and that

i-

Thus, no special treatment is required for the argument of the complex sine.

The result of this transformation is shown in Fig. 6, where S and P denote

the suction and pressure sides. The quantity q(a)is then formed from the
ratio of the sines; this curve is shown in Fig. 7. The interior of the blade

lies outside the closed curve in this plane. Because this function is to be

raised to a power, its argument must be defined on the suction and pressure

sides in such a way that the exponentiation will map the trailing-edge region

into a straight segment. In the computer program, these arguments are first

found from the Fortran DATAN2 function, which returns angles in the range from

-7r to +1. These arguments are then adjusted, by defining the argument for

KJ=2, and by then examining the points KJ=3 to KJMX, adding or subtracting

2 rfto the argument whenever the cut (along the negative real axis) in the

DATAN2 function is traversed counterclockwise or clockwise, respectively. The

arguments defined for KJ=2 use the following convention: for H>O (i.e., a

stagger corresponding to a compressor blade row) the argument at KJ=2 is taken

to be negative. For all other cases, the argument at KJ=I is accepted as

returned by the DATAN2 function.

8II
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The next step is the exponentiation, defined as:

- [ 2)] K -- E X V 3 --- (2-8)
[r EX

The result of this step is shown in Fig. 8. As noted above, the value of ex

for a sharp-trailing-edge blade is fixed by the angle Z' , whereas for a round

trailing edge a range of values of EA , in the neighborhood of 0.3, will produce

a curve in thel2. -plane that is "star-shaped", i.e., its polar coordinates will

have a radius that is a single-valued function of the angular coordinate.

The next transformation is a bilinear one, whose purpose is to produce

a curve in the W -plane that can be mapped into a unit circle in a subsequent

step: -b (-

C 12 T ' (2-9)

-a

where a, , and C are complex constants. Three conditions must be assigned,

in order to evaluate these constants: Ives suggests, for two of them, that

the images of upstream and downstream infinity be mapped into Wu± I . As

the third condition, he recommends that the centroid of the blade-surface image

j in the W -plane be forced to be close to the origin. This condition was applied

in Ref. 1; however, it has been found simpler to impose a condition on the

ratio between the maximum and minimum radii in the £0-plane, as outlined below.

The calculation of the centroidal location has been retained in the present

code, for informational purposes. (Details on how this is calculated can be

Ifound in Ref. 1).

f IThe locations of the images of upstream and downstream infinity in

the - and l. -planes can be expressed as follows: in general,

1* ~() ---- ___________________

11

OeL +

I+



ca

___n_ Re.(f.

-2

Figure 8. The Mapping 1.E
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I As Z-00 along line ® of Fig. 9,

Using the large-argument approximations for the hyperbolic functions then

gives

( - e C - K C - (2-10)

where a little algebra reveals that

IxK Z; 4~'~ - 1 f/ ${?(AT - r

X*K -! jW z H+JEM-*

As z +  along line (J of Fig. 9,

0& -0, ,J,, - - 0, '~ nic Jwrn 243 - 0

and these lead to

where e44 ) = - ( Thus

-X.K -X (2-11)

and

I (2-12) ,
Note that

1 "13

F '
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.4 __ _K 1

Figure 9. Location of the Points at Infinity
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The constants a-and b can be expressed in terms of C by the two equations:

-ia _ -o.C 1-b

The solution is:

S-2 C + .- + a a+

1 C*-/2.

Ec F (-13)

Iwhere E and F are known quantities:
I E 2 _,1.+ +X!L"

2 , F . (2-14)

j In terms of the parameters E , F , and c, the transformation can be written

as

E-Fc + (E-F). _ (2-1s)

.o (oo + F)c - E (2-16) i! e,,JF + Ec

The latter relations can be used in an iteration procedure to find a value of

C that will minimize the ratio RMAX/RMIN, where RMAX and RNIN are the maximum

and minimum values of jIWl over the set defined by KJ=l to KJMX. The iteration

process is as follows: on alternate iterations, values of C are chosen that

will either reduce RMAX or increase RMIN. This is done by solving Equation 2-16

for C

1 CE (2-17) 4
r On the first iteration, C 1+ 1 is used; the values of RMIN and the index

KJ=KJMN at which it occurs are then found. Next, a new value of C is calculated,

1s

i • 4-



using Eq. 2-17, such that the new value of W (KJMN) will equal 1.1 times the

value just found. For this new mapping into the (A-plane, the value of RMAX

and the index KJ=KJMXX at which it occurs are found. For the third iteration,

a value of C is used such as to generate a new value of W3 (KJMXX) equal to

0.9 times the previous one. This alternating cycle is then continued until

the ratio RMAX/RMIN is less than the tolerance RTOL. This tolerance is assigned

a default value of 3.0; values up to 6.0 have been handled successfully by the

subsequent steps in the transformation.

The iteration on C can be bypassed, if C is already known, by setting

IGOT=l and reading in the value of C . Figure 10, reproduced from Ref. 1, was

generated this way.

Next, the blade-surface image in the W-plane is mapped into the unit

circle in the r - plane with the trailing edge at = 1 by a variant of the

Theodorsen-Garrick transformation:

+ (2-18)

To determine the coefficients, the values of w and 4 on the blade surface|f

are written as
jo i4,

"4 r (a ee (2-19)

Then the real and imaginary parts of the transformation are

. r .A,+ - A. (2-20)

+ + + Bi(2-21)

16
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The coefficients are then determined by the following iteration procedure:

an equally-spaced array of values of 0 is set up, and all the coefficients

are initially set equal to zero. Then the second equation gives 9 = 0 as

the first approximation for 0 . For each of these values of 0 , a corres-

ponding value of Av% r can be found, from a spline fit to the coordinates of

the blade-surface image in the w-plane. These known values of J"r are then

used in the first of the equations above, to find the next approximation to

the and B coefficients. These coefficients can then be used to give the

next approximation to e(Oc), and the process is continued until convergence

is reached, to some preassigned tolerance. Fast Fourier transform tech-

techniques 6 can be used in the processes of evaluating the second equation, for

known values of the coefficients, and of determining the coefficients from

the first equation with known values of _-,i r . These techniques were applied

in the present calculations. The details are given in Appendix A.

Sufficient conditions for convergence of this iteration process

have been discussed by Warschawski. For the present case, these conditions

are not met; in particular, it is required that the maximum and minimum values

of r (e) obey the relation:

lReM , x PMAX
- -I < 0.2q5 or - < 7.107k

,R M/N RMIN J

This condition is not met in the present case, where RMAX/RMIN is approxi- J
mately 2.5. It was found, however, that the iteration process would converge

6. Cooley, J.W., Lewis, P.A.W., and Welch, P.D., "The Fast Fourier Transform
Algorithm: Programming Considerations in the Calculations of Sine,
Cosine and Laplace Transforms", Journal of Sound and Vibration 12,
(1970) pp. 315-337.

7. Warschawski, S.E., "On Theodorsen's Method of Conformal Mapping of 1
Nearly Circular Regions", Quarterly of Applied Mathematics 3, (1945)
pp. 12-28.

18
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if a relaxation parameter was used, i.e., the values of e called for by the

second equation C called 6*J were not used in the first equation, but were
replaced by 9new  = 0.10?* + 0.9 9 old* With this relaxation factor, the

iterations were convergent: after 68 iterations, the maximum change in any

of the values of 8 was less than 10- 2 radians. The variation of & with 0 is

shown in Fig. 11. Calculations for other cases, not shown here, have required

relaxation factors as low as 0.02 for convergnece. A recent review paper by

Henrici (Reference 8) calls attention to the applicability of under-relaxation

in this problem.

The next transformation is

I q ~' ... ~(2-22)

where a, )6, and X are chosen so as to place the images of z = t av at q
= t S, while the blade surface continues to be the unit circle. These images

are located, respectively, at W =_i, and E - , . Explicit formulas

for m /3, and in terms of 4. and 4. are given by Ives 5 as

X 2 14A + 812 2

- + V1 ;417P ,,I

.I"= rr Iz+ V "77 - ''-, , Viz-.V"'-

2 4 ; - WES (4. - ) - 4+ )] / 4S)r (4a - 48 + (4A + ,,) -2 44

8. Henrici, P., "Fast Fourier Methods in Computational Complex Analysis".
SIAM Review 21, (1979) pp. 481-527.

19
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Figure 11. Variation Of evs. *on the Blade Surface l
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(2-23)
4 ,9

Mokry (Reference 9) has pointed out that the formula for fcan be simplified,

as follows: define

C

Then

-/I -- 1 - T C -Sic/ 4'

40c - ccic- -Sc 4

C - .ci I cI = - Sc (2-24)

* The computer program described below does not use these simplifications.

Next, it is necessary to find and 48' given wo = - 1. This

was done by Newton-Raphson iteration:

C'4

9. Mokry, M., "Comment on Analysis of Transonic Cascade Flow Using Con-

formal Mapping and Relaxation Techniques", AIAA Journal 16, No. 1,

(January 1978) p. 96.

21
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where

g ~ ~ 2 4 + 19Ci + i ~ )

In order to find an initial guess for , a preliminary calculation was made,

for

121 = 0.49 (.1) 0.99, arg = -600 (100) + 600

From this set, the value of ; which gave twnearest to +1 was chosen as the

initial guess. This set was then repeated with 4 replaced by - - , to obtain

the value of that gave W nearest to -1. The locations of key points in the

Z and '1 planes are shown in Fig. 12.

When the values of 4 A and 8 are known, the blade-surface-image points

can be mapped from the 4 -plane to the '2 -plane. In both planes, these points

are located on unit circles, so it is only necessary to interpolate in Fig. 12

to find the 4 -values for the points defining the blade surface. This is done

with a call to the spline-fit subroutine, and the values returned by it are

replaced by linear interpolation in regions where the &9, 10 curve is so steep

that the spline fit returns non-monotonic values.

The final transformation now uses an elliptic function to map the

unit circle in the q -plane (with cuts along the real axis from 5 5 to the

circle) into a rectangle:

r , 55n ¢ , )(2-25)

where the parameter k is given by
2 (2-26)

22
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rE --s +
TE 

+ E

S£

Figure 12. The 4 and q Planes

The inverse of this transformation is

r(2-27)

This latter transformation is usedto find the images, in the -plane, of

the blade-surface points. This requires an expression for the real and imag-

inary parts of the incomplete elliptic integral of the first kind; convenient

formulae for this purpose are given by Nielsen and Perkins10 who show that,i if
i= r + 

(2-28)

then
F F&vrA ' F(vF' Ak' (2-29)

where

10. Nielsen, J.N. and Perkins, E.W., "Charts for the Conical Part of the
Downwash Field of Swept Wings at Supersonic Speeds", NACA Technical
Note 1780, (December 1948), Appendix C.

23
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and where F ( . denotes the incomplete elliptic integral of the first

kind, with real arguments X and a- given as functions of T,&S and A_:

,k = + , -.. + 6(d1+ 2 +a, a)' [I + (

- V0 A(,arg) 4262( 2 zk 2 +Y] 4 42-'

- /E + - X + 1 -(2-31)

These formulae are equivalent to those following Eqn. 11S.01 of Byrd and

Friedman;11 the formula for X has been rearranged slightly from the form

given by Nielsen and Perkins, to avoid the occurence of negative values

under the square root sign, which can sometimes happen in the numerical evalu-

ations when <S = 0 . These formulas are correct along the branch cuts,

where =0 and 91/1 >1.

Numerical evaluations of these elliptic integrals were done using

twelve terms in the formulae of Luke: 1 2

0

F + 2 (2-32)

11. Byrd, P.F., and Friedman, M.D., Handbook of Elliptic Integrals for
Engineers and Physicists. Springer Verlag, Berlin (1954).

12. Luke, Y.L., "Approximations for Elliptic Integrals", Mathematics of
Computation, 22 (1968) 627-634.
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II where! ¢ < Tr/2 r,,, =n 7r-zd,,,z 12= 5~l

For the case where : =TL/2 (the complete integral) the approximate formula is

I 2 so I, (2-33)

The signs in the formulas above pertain to the first quadrant in
the rl -plane (T >.O, 0 0), which maps into a rectangle in the first quad-

rant of the -plane, with sides located on the lines

K(it) t'-.5,o _ 4TI-_ S4 - e

__- K') f-- dt
S j-_ - 1---7-s) , (2-34)

!The remaining three quadrants in the I -plane map into the remain-

ing three quadrants in the -plane, as described in Reference (13), p. 377; the

cuts from t-5 to the unit circle along the real axis become the left and

right sides of the rectangle in the £ -plane:

13. Erdelyi, A., et al. Higher Transcendental Functions, Volume 2, p. 377,
McGraw-Hill Book Company, New York (19S3).

25
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K4.4

PL.PNE PLRNE

Figure 13. The ?~and J Planes

Finally, the -plane is re-normalized, so as to lie between -1 and +1 onj

both axes:

! eRe

Z - L C2-35) 1
K (k) ~ ic

4 A grid is now to be set up in the plane, and mapped back to

the A - plane. This process is facilitated by first rearranging the

quadrants in the ~-plane, by using the periodicity of the elliptic functions

as follows: in the first and second quadrants, let 4 ',and in the third

and fourth let + 2 K(A)) and use the relations (see for

example, Eqs. 122.00 and 122.04 of Reference 11:)

26
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5Th (;:: ,-:A( rK) Sn -; + 2K) ] S [-K-(e+ K)J (2-36)

The F plane then has the 1orm:

II

t Figure 14. Thei; Plane

Two types of grid can be selected in the 4 plane: a rectangular one

(if ISHEAR=O) or a sheared one (if ISHEAR=1). The latter is the default.

For the rectangular grid, equally spaced points are assigned, ac-

cording to

Oe ( K-1)A~. a K ,-2 72. I(MX (2-37)

I , .4",.) = K'-&)- (L- ) L" ,a, ..,LMX

, twhere

rel KMX1 -1 LP'X- 1 (2-38)

f Becuase the mapping is conformal, the images of these grid lines will intersect

at right angles when mapped back to the physical plane.

The rectangular grid has the property that in general the trailing

edge is not connected, by a grid line, to the point at downstream infinity.

However, such a connection is a desirable feature in certain flowfield codes

- :27
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(see Ref. 14, for example). To allow this feature, the ISHEAR=l option

establishes a sheared grid, consisting of the same .J,(9) lines as above, but
replacing the k(4') lines by a set of parabolas which intersect the blade

surface at 90 degrees, and are displaced from a base parabola that connects

the trailing edge to the image of downstream infinity:

This grid is given by

S(TE) +(K- ) 

[ T - K = . , .. KMX (2-39)

+ I '

cost L . LMX

where

.dToist r [E [K, J
4 [3K* + (TE) (2-40)

Some points on these parabolas will lie outside the range

-3Kk) +

When this occurs, equivalent points are found by adding or subtracting 4K(),

the period of the elliptic sine. In addition, the base parabola is always

joined to the lower-left corner of Fig. 15, by subtracting 4K(A)from the

real part of fTE ' if the latter is greater than -K(4A).

A

This completes the definition of the grid in the C -plane. Each

of these grid points must now be mapped back to the physical plane. The first

14. Nenni, J.P. and Rae, W.J., "Experience with the Development of an Euler
Code for Rotor Rows", ASME Paper 83-GT-36 (March 1983).
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I
f transformation is: = sn ; ) =, ." ; ) (2-41)

'j IThe elliptic sine of a complex argument is expressed as (Ref. 11, Eq. 125.01)

Sin ( + L V,)

5,n ((A, cL )on (v, -A) + .Cm,-*.,,) c~n (L, * ) s n ( %r, -A') en (, -k)

i - S"(V, "
4 j) dnt( , ) (2-42)

The functions in this expression are evaluated by the Arithmetic-Geometric

Mean method (see Ref. 15, p. 571):

Set

a,0 =O1 , b c O

and then calculate

CL + b- ) , b, /a., b_,

-(a..,- bn,) (2-43)

until C. =0 to a prescribed tolerance (10- 7  was used in the present case.)

Then form

NI = 2 .

I and calculate -, 1 0 , from

I~~ an. -c~,aC J~ - -~)? (2-44)
2L 4'-n

fThen the desired results are given by

15. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions,
National Bureau of Standards, Applied Mathematics Series 55 (1964).
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d~n (.,i& (2-45)(1, - 1o)

These values of '7 are then mapped back to the 4 - plane

by

4 ,(2-46)

and thence to the W- plane by

w f [ (Ri -Li). L (2-47)

Lastly, the value of Z must be found by inverting:

_I ---- (2-48)

This is written as
= (.) - .fl (2-49)

and is solved by a Newton-Raphson procedure

,) (n) F 2 (2-SO)

F(
where

F 'z , , _____ 
+ 

_ 
'

__ (2-51)
H+i a 7 z -Z
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The final result of this process is shown in Fig. 15, for a rectangular grid

(examples of sheared grids can be found in Refs. 4 and 15). Note that the

grid line in Fig. 15 which goes to downstream infinity does not originate

at the trailing edge.

I
I

I

I
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Figure 15. Coordinate Mapping
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Section 3

METRIC EVALUATIONS

The coordinate transformation enters the flowfield solution algorithm

only in the metric derivatives. These can be evaluated by differencing the

coordinates themselves, or in the case of a conformal transformation, by evalu-

ating the analytic expressions for them. These analytic expressions are derived

in Ref. 1, and the code listed in that report contains the Fortran statements

required to evaluate these expressions. However, as pointed out in Ref. 14,

the truncation error resulting from the use of analytic metrics in the finite-

difference flowfield code is large enough to cause major instabilities in the

solution algorithm. It is highly preferable to use metrics that are found by

differencing the coordinates in the same manner as the flowfield variables are

differenced. A program to achieve this, for the grid conventions used in

Ref. 14, is given in Appendix D.

3i
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Section 4

COMPUTER PROGRAM

A listing of the computer program is given in Appendix B, and a

dictionary of variables is given in Appendix C. This section contains a

general description of the program, plus some specific details.

In order to handle complex arithmetric, all variables beginning

with the letter Z are declared to be complex by an implicit type specification

at the beginning of the program.

The input is generally described by comment cards in the deck. Cer-

tain blade-shape parameters must be read in: EX, G, H, ZLE, ZTE, ZN, ZT. Also,

if IGOT=I, ZC must be read in. The blade shape itself is defined by pairs of

coordinates in the 5 , n plane - KJS on the suction side and KJP on the pressure

side. In the version shown here, these were read in as a table in subroutine

SHAPE.

The blade surface coordinates are numbered from 1 to KJMX; point number

1 is the trailing edge, 2 through KJLM are on the pressure side from trailing

edge to leading edge, point KJLE is the leading-edge point (ZLE), KJLP through

KJMXM are on the r :tion side from leading edge to trailing edge, and point

KJMX repeats the trailing edge.

The complex sine functions are calculated next; then the iterations

to determine the parameter C are done. The initial guess provided for C is

ZC 4S . It may happen in somny cases that a better guess is required:

in particular, it is necessary that the value of C must lie outside the blade- j
surface curve in the-' -plane. If it does not, then the interior of this

curve in theA -plane is mapped to the exterior of the blade-surface image in

the W -plane. This fact can be seen from the discussion by Kober (Ref. 16)

of the bilinear transformation applied to circles.

16. Kober, H., Dictionary of Conformal Transformations, Dover Publications,
New York (1957. 1
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After the parameter C has been found, the transformation to the

plane is carried out, using the fast Fourier transfrorm procedure (see

Appendix A). The actual calculations of the Fourier coefficients are done

in subroutine FFT2, a proprietary program of International Mathematical and

Statistical Libraries, Inc. (IMSL). This routine computes the fast Fourier

transform of a complex vector of length equal to a power of two (here 2 6).

The coefficients of the input vector are given in normal order by the

array named as the first argument of the call; the coefficients of the

output vector are overstored in this array, in reverse binary order.

The subroutine SHUFL is then used to restore this output to the normal order.

The coefficients in the series expression for 4 are determined iteratively
in a relaxation process that is terminated when the maximum change in & falls

below the tolerance ANGERR, or when IMX iterations are done.

In doing these iterations, it is necessary to know values of

r at given values of &; these are found by a spline fit in subroutine

CISPLN, which is a straightforward implementation of the formulas given by

Ahlberg, et al.
1 7

SvIn certain cases (typically when RMAX/RMIN is large) the calculated

variation of & with 0 may be non-monotonic; if this occurs, the calculation

should be repeated, with a smaller relaxation factor. The progress of the

+ iterations is printed, showing at each iteration the largest change in

and the number of reversals (i.e., the number of occurrences of non-monotonic

variation).

I Next, the parameters 4n and e, are found, starting with "best-guess"

values calculated in the sectors described in Section 2. Once these are

found, the mapping to the vl -plane follows. The calculations that link the

A -plane and the 4 -plane are done in subroutine OMETA, which sums the

Theodorsen-Garrick series, using complex arithmetric. This subroutine has
been modified slightly from that appearing in Ref. 1, as follows: the previous

f code evaluated sums of the form

17. Ahlberg, J.H., Nilson, E.N., and Walsh, J.L., The Theory of Splines
and Their Applications Academic Press, New York (1967). L
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_5 TP- I
E suM -- a z cc (Tp) 2 (4-1)

lP= I

by a sequence of multiplications and additions:

ZSUM = Zcc (/,s) ' &4 + Zcc (4) '3  ,. 4Zcc(l) (4-2)

The current version uses (Ref. 18, p. 28)

;ZSUP1 = < [[Z'CC (,5s) tCC(&-f) I  + Z CC,63)} ,+...(-3

Finally, the blade-surface image is mapped into the 4 plane, using
10 12the elliptic-function formulas of Nielsen and Perkins and of Luke, as

outlined in Section 2. This completes the mapping of the blade surface.

It is now possible to set up a grid in the - plane, and map it

back into the physical plane. This involves straightforward evaluations of

the transformation functions. The only new complications are the need to

evaulate the Jacobian elliptic sine (done in subroutine JCELFN) and to provide

a good initial guess for the Newton-Raphson iteration used in finding Z(I2)

This guess is provided by starting each series of calculations on the image

of the blade surface in the plane, and interpolating to find the corresponding

point in the 5, & plane. The interpolation is done as follows: the blade-

surface image values of 4 are stored in the array ZAI(I), where I ranges from
1 to KJMX. Each of these maps into a point in the S , t plane, which is stored

in the array ZA2 (KJ),where KJ also ranges from 1 to KJMX. Thus the 4 plane
has the appearance:

rT = K TM J(- DXi

-t KjMX X KEDCE1 XIM
Ka I XMX

18. Hartree, D.R., Numerical Analysis, 2nd Edition, Oxford, Clarendon
Press (1958).
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Points in the uniform grid are denoted by K, L, where

&(cf) = K K(A) +(Ki D(IP Ks7 KMX
(4-4)

J, ' (L - 7) DXIM L = 1, LMX

The value of I for which the real part of ZAI(I) is largest is denoted as

KEDGE. Then, for a chosen value of K (with L = 1) the array ZAI(I) is

searched (first for I = KEDGE to KJMX, then for I = 2 to KEDGE-l) until a

value, called I*, is found such that Q-[2911I) - R ( If none is found,
* *

it is concluded that I = KEDGE. Linear interpolation is then used, between

the points I and I - 1, to provide the initial guess. Fifty iterations

are allowed for this step, at each value of K and L. If no solution is found,

the value (0,0) is printed.

The calculation of the images of the grid points in the various

planes is bypassed for the points at upstream and downstream infinity, and at

the trailing edge. (The trailing-edge point will be a grid point if ISHEAR=I).

The 7 -plane locations of upstream and downstream infinity are arbitrarily

assigned to finite locations given by linear extrapolation from the two adjacent

.1 L -values.

The point at upstream infinity will be a grid point only if KMX is

odd; in this case IOE=l, and the image calculations are bypassed.

Adjustments to the grid-point image locations in the Z -plane are

sometimes required for points on the periodic ouundary (L=LMX) for values of K

near 1, KMX/2, and KMX. At these points, the Newton-Raphson iterations used

in going from the l- plane to the 9 -plane sometimes cannot distinguish between

points that are separated by H+ . The problem can be seen best in the

W -plane. (The sketch below is for an even value of KMX; the same picture

applies for an odd value):

3 *In Ref. 1, a quadratic interpolation was used. This introduced many complica-

tions, in order to avoid conditions where the interpolation base points
straddle a sharp leading or trailing edge, and where I* is near KEDGE or
KEDGE-1. The logic in Ref. 1 was not adequate to handle all such cases.
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L=1

K= -

JK M X PERIOPIC BOuNvDARY

PO/NT ON THE PERIODIC BOUNDARY

Note that the same point in theW -plane (and thus also in thef. -plane) can

map into either of two points in the Z -plane, which differ by H +L Cr . The

selection is guided toward the correct value by starting on the blade (L=l)

and working toward the periodic boundary (L=LMX), but it can happen that the

wrong branch is chosen during the iterations. To avoid this, the imaginary

parts of Z and EN are compared, for K values near the leading edge, and the

imaginary parts of Z and ZT are compared near the trailing edge, and the

quantity L-5& is added or subtracted (depending on the value of K ) where

necessary.

Finally, the real and imaginary parts of Z are punched on cards

(if PNCHZA=TRUE). These values can be used, in a separate program, to calculate

the metrics of the transformation (see Appendix D).
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f Section 5

CONCLUDING REMARKS

The program described above has been applied to very few cases-

the thick blades used for illustrative purposes in this report, and the cases

shown in Refs. 4 and 15. Because of this limited experience, the range of

applicability of the program is largely unknown. On the basis of current

experience, it appears that the Theodorsen-Garrick step may not converge for

gap/chord ratios less than around 0.8. The set of numerical tolerances,

maximum iteration counts, and relaxation factors used may need to be adjusted

for certain shapes. In addition, new approximations may be required as initial

guesses in various places, in order to handle such features as leading edges

with very small radii of curvature.

IU
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Appendix A

DETAILS OF THE FAST FOURIER TRANSFORM PROCEDURES

Equations 2-20 and 2-21 contain 2N#.2 constants, which are evaluated

as follows: first, they are satisfied at a discrete number of points, denoted

b y 7:

- N- , K - 1,2,.., N (A-i)K 2NN (A-1)'

where N was chosen to be 64, in the present case. Thus:

N-1

- *+ c - . .(,A (A-2)

Each right-hand side now contains 2N coefficients. The correspondence between

either of these and the Fast Fourier Transform (FFT) as presented in Ref. 6

is given by the next two equations: consider the expression

SN-I i .€ r

Y (J) C n wz ; o,,a,..., 2N-1; WN = e (A-
rt =a(A-4)

where values Y') are real, and the 2N values of C(.) are in general complex,

but must satisfy the following redundancy condition, in order that the Y()
values be real:

CI) = C(ZN-n) , n = 7,2,.., N-1 (A-S)

C (O) and C(N) pure real

where the tilde denotes the complex conjugate. When these conditions are

met, Eq. A-4 can be written as

Y( ) = CR(o) + (-,)I c,, (N )+ 2 E -C1( (fl) A4, ,,
.(A-6)

This form can now be used, in conjunction with Eq. 2-20 or 2-21, to facilitate

application of the FFT to the complex form given in Eq. A-4.

A-1 J'



In the case of Eq. A-2, values of the coefficients Q. through /N

and B, through 8 M. are found, from given values of Ar . This is procedure

4 of Ref. 6, which takes the following steps:

1 . S e t X ( - ) - Y ( 2A ) = ( .-I " r ) aoA
fie 07,., ,N-7

× ('*) = Y(a-&ti) - (.J r)2 &,,,J (A-7)

2. Set X(X LX Z(j , 0) 7)...,N-7 (A-8)

3. Calculate the N -point Discrete Fourier Transform of

~-ni
A t(t) = +,(n) +A z(t) X - X(IWN ; n o,i,.., N-i

N 19 0 (A -9 )

Zff
vi = e N
WN

4. By periodicity, set iR (A/) =? (ol

5. Apply Eq. 34 of Ref. 6, in order to extract 1 (n) and ( from i(n):

r)= -i ~ (N-n) + (t) 1A { N-') + A- 
(A-10)

Note that these expressions use A(a)for eL 0, 1,..,N to give A,(Pt) and A2(rL)

for ,1-, 7,...) N/2

6. These values of A,(Pt) and *4 (,) then give C(n.) for the same range:

C(1) - + PQ r? - 0,1, .N/. (A-11)

For the range ofrt from - +1 to N-I , use Eq. 36 of Ref. 6, wither replaced-/N

byN- (and noting that WZN - ):

- a(aN-) (A-12)

N -, -) + W , ( N - ,P ) , , + +7 + -.z , ..-2 j _ I

A-2
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I
I

N
This equation, applied for ,Z ,Ltj -+ ... N-I uses f, and Fz with index
ALI) N-Z,.. I to get W.() for nu A+Z1 .. " N-i . The process is completed

by setting c(N) -{A,(o)- (A-13)

7. The and I coefficients are retrieved from:

C [)] 1 P f d [(A-14)

i - [, , - a - [c ] , j--,, [, P., N-,

At this point, B. and ON are undetermined. Following Ives, BN is set equal

to zero, and 8, is chosen so as to place the trailing edge at 4=0 (this latter
selection of B. is actually carried out in a subsequent step, noted below).

In the case of Eq. A-3, the R's and B 's are considered known, and

are used to evaluate O . The coefficient B, can be found from

N-1

K B. + Z 8 (ON - 0) (A-1S)

Actually, it is simpler to evaluate the right-hand side of
M-1

S(_ +_ A, ̂  o,,,...,N-7
- (A-16)

and then find B, from
Ii '/ " - .I .. (A-17)

The actual nvaluation of the right-hand side takes the following steps (Pro-

cedure 5 of Ref. 6): by comparison of Eqs. A-3 and A-6:

1. Set C (0) - 0, C(A() 0

- - - .. N(A8)

f Note that the C 's determined here are different from those used in Procedure 4;

the Ai and values are the same, but their relation to C is different.

2. Values of C are then used to find A,(n and :(n: Equations 40 and 41

nf Ref. 6 are rewritten, using

A-3

.
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C(&L)

Replace P% by N+nr:

C (N~n = (aN-N-4) = 2 (N-4)

Thus Eqs. 40 and 41 of Ref. 6 are

J9,(t) = COL) + r(N-,t) 1 . N/a

A(') = [C W" (N - jr L > (A-19)

These are all the values needed for A, and Aq.

3. Find i(,) ,n.-oi,...,N-1 from Eqs. 42 and 43 of Ref. 6:

P = 0I,z,.., N/z (A-20)

49(N-,) 4 ,) 

I

This gives, on the left-hand side, all values from rtzo to PE-N.

4. Calculate

. =0, 1, ... N-i (A-21)

5. Finally:

.,- 1+ - I,[ ] N -
~ ~ ~ ~~J(A-22)

The first of these equations, with A-0, is used to find 8 .

In order to apply these formulas, it is necessary to have a relation

A-4
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I

I between r and 6"

lK r K , 1,2 t4 (A-23)

which is found from a spline fit to the blade-surface image in the W - plane.

The discrete Fourier transform and its inverse are given by

A XN- ) / n 0 1, N-i (A-24)

'Y -
X (,) E n) N o, 1, 2,.. N- i (A-25)

n Uo

The IMSL routine FFT2 evaluates the second of these, i.e., it returns

X(T) , given the values A(n ) . To evaluate the first of these, FFT2 is

used with input X / N , and with output interpreted to be 19(n)

this is Procedure 1 of Reference 6:

/ 9 A(n) - " ( J- (A-26

I

In the FORTRAN version of these and other procedures, it is conve-

nient to use indices that beginat one, rather than zero, by setting 41

(FORTRAN symbol JP). The corresponding table, for example of the coefficient

B., is

J

A-S



JP B. B(JP)J

0 1 B B(1)0

1 2 B1  B(2)

2 3 B2  B(3)

N-1 N BN- 1  B(N)

N N+I BN B(N+I)

In addition, care must be taken with the argument N-n.; for example, Eqs.

are written as

(NP) = ZCC (NP) + ZCC (N 2 - NP)

NP~v

z J9(NP) = [zcC(NP) - CC (NA- NP)] (-
(A- 27)

It can be verified that the quantity N + 2 - NP in the arguments above pre-

serves the correct ordering - for example when N = 64, and n = 0, C,(N-,n) sC(44)

This would be stored in ZCC(64 + 2 - 1) = ZCC(65).

4
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Appendix B

COMPUTER PROGRAM LISTINGI

LEVEL 21.7 ( DEC 72 ) OS/360 FORTRAN H

COMPILER OPTIONS - NAMEs MAIN,OPT=02,LINECNT-60,SIZE-OOOOK,
SOURCEEBCDIC,NOLISTNODECK,LOAD,MAP,NOEDIT,ID,XREF

C
C PROGRAM IVLTMP - THE IVES - LIUTERMOZA CONFORMAL TRANSFORMATION FOR
C TURBOMACHINERY CASCADES (AIAA JOURNALVOL. 5,1977, PP 647 - 652)
C DOCUMENTATION IS GIVEN IN:
C W. J. RAE, A COMPUTER PROGRAM FOR THE IVES TRANSFORMATION
C IN TURBOMACHINERY CASCADES, CALSPAN CORPORATION REPORT 6275-A-3,
C NOVEMBER 1980
C W.J. RAE, MODIFICATIONS OF THE IVES - LIUTERMOZA CONFORMAL-
C MAPPING PROCEDURE FOR TURBOMACHINERY CASCADES, ASME PAPER
C 83-GT-116, MARCH 1983
C W.J. RAE, REVISED COMPUTER PROGRAM FOR EVALUATING THE IVES
C TRANSFORMATION IN TURBOMACHINERY CASCADES, CALSPAN CORPORATION
C REPORT 7177-A-1, JULY 1983
C

ISN 0002 IMPLICIT REAL*8(A-H,O-Y),COMPLEX*I6(Z)
ISH 0003 LOGICAL PNCHZA

ISM 0004 COMMON/TGINTG/NNPI,NP2,N2,NB2,NB2PI,IP,IPMC,ITP.IWK,IMX,KJMX
ISM 0005 COMMON/TGCMPX/Z1,ZW2N,ZI,ZNN,ZA,ZCC,ZAIZA2
ISN 0006 COMON/TGOBLE/PBN,OM,OMM,ANGERRABE,F,THT,PHI,X,Y
ISN 0007 DIMENSION ZS(80),ZP(80),ZOMS(80),ZOMP(80)
ISN 0003 DIMENSION RDS(8O),RDP(80),THS(80),THP(80)
ISN 0009 DIMENSION RDSX(80),RDPX(80),THSX(8O),THPX(80)
ISN 0010 DIMENSION X(160),Y(160),E(IBO),F(150),THT(160)
ISN OOli DIMENSION PHI(130),A(65),B(65),ZCC(65),

* ZA(165),ZAI(165),ZA2(165),
* IWK(7)

ISl 0012 DIMENSION ITP(100),ID(36)
ISN 0013 DIMENSION XX(50,20),YY(50,2O)
ISN 0014 DO 10 I - 1,7
ISN 0015 10 IWK(I) - 0

ISN 0016 NAMELIST/INPUTS/ ANGERR,EX,G,HIGOT,ILE,ITEKMX,
* IMX, LMX, OM, PNCHZA, RTOL, ZC, ZLE, ZN, ZT, ZTE,
* IPMX,ISHEAR,INR,KJS,KJP,KNR

I' C
C --- SET NAMELIST DEFAULT VALUES
C

ISN 0017 ANGERR-O.0100
ISN 0013 IGOT-0
ISM 0019 ILE a I
ISN 0020 ITE-0
ISM 0021 KMX - 40
ISM 0022 LMX - 10
ISM 0023 KJS a 20
ISN 0024 KJP a 20
ISM 0025 IMX - 400
ISM 0026 ISHEAR a 1
ISM 0027 IPMX I 1
ISM 0028 KNR * 0
S 0029 INR" 0
ISM 0030 OM-0.1DO
ISM 0031 PNCHZA-.FALSE.
ISM 0032 RTOLo3.00O

C
C NOTE: EX, G, H, ZC, ZLE, ZN, ZT, ZTE HAVE NO DEFAULT VALUES
C (ZC IS NOT NEEDED IF IGOT-O)

B-1
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C
ISM 0033 READ(5,103)( ID( I ),I-1,36)
ISN 0034 103 FORMAT(18A4)

C
ISM 0035 PI - 4.ODO*DATAN(I.0DO)
ISN 0036 TPI - 2.ODO*PI
ISN 0037 ZPI - DCMPLX(PIO.ODO)
ISM 0038 Zi - DCMPLX(1.0DO,0.ODO)
ISN 0039 ZERO - DCMPLX(O.ODO,O.ODO)
ISN 0040 ZMGA - DCMPLX(+I.ODOO.ODO)
ISN 0041 ZMG8 a DCMPLX(-I.ODO,O.ODO)

C '* READ PNCHZA-T IF (ZA(L),L-i,LMX) IS TO BE PUNCHED FOR ALL VALUES
C * OF K. OTHERWISE READ PNCHZA-F
C IGOT - I IF THE VALUE OF ZC IS KNOWN. OTHERWISE, IGOT - 0.
C KMX AND LMX ARE THE GRID SIZES IN THE FINAL TRANSFORMED PLANE.

C KJS AND KJP ARE THE NUMBERS OF POINTS ON THE SUCTION AND PRESSURE
C SIDES AT WHICH PAIRS OF BLADE COORDINATES WILL BE INPUT.
C ILE - 0 OR 1 FOR A SHARP OR ROUNDED LEADING EDGE, RESPECTIVELY
C ITE - 0 OR I FOR A SHARP OR ROUNDED TRAILING EDGE, RESPECTIVELY.
C IMX IS THE MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR THE PHI/THETA
C ITERAT!ONS
C INR AND KNR.NE.O WILL CAUSE A DIAGNOSTIC OUTPUT FOR THE FIRST INR
C NEWTON-RAPHSON ITERATIONS (TO FIND Z, GIVEN ZBOMK), AT THE STATION
C K - KNR. THE PROGRAM WILL THEN STOP.
C IPMX.NE.1 CAN BE USED TO DISPLAY THE VALUES OF THETA DURING THE
C PHI/THETA ITERATIONS, AT THE ITERATION NUMBERS READ INTO THE

C ITP ARRAY BELOW.
C ISHEAR - 0 GIVES AN ORTHOGONAL GRID. THE LINES K-i AND K-KMX, WHICH
C START AT THE TRAILING EDGE, DO NOT GO TO DOWNSTREAM INFINITY.
C ISHEAR - 1 SHEARS THE GRID UNIFORMLY: IN THIS CASE, THE K-1 AND KMX
C LINES 0O GO TO DOWNSTREAM INFINITY.
C OM IS A RELAXATION FACTOR USED IN THE PHI/THETA MAPPING. USE 0.1.
C OR A SMALLER VALUE IF THE A AND B ITERATIONS FAIL TO CONVERGE.
C ANGERR IS THE ANGULAR TOLERANCE (IN RADIANS) FOR THE PHI/THETA
C TRANSFORMATION. A REASONABLE VALUE IS 0.01
C RTOL IS THE TOLERANCE FOR THE MAX/MIN RADIUS RATIO IN THE
C OMEGA PLANE
C

C --- FOR A SHARP LEADING EDGE (ILE-O) ZN MUST EQUAL ZLE
C --- FOR A SHARP TRAILING EDGE (ITE-O) ZT MUST EQUAL ZTE
C
C --- READ NAMELIST INPUT DATA
C

ISM 0042 READ(5,INPUTS)
ISN 0043 ITP(l) - 999
ISM 0044 IF(IPMX.NE.I) READ(5,I02)(ITP(IP),IP-I,IPMX)
ISM 0046 102 FORMAT(2014)
ISN 0047 IP - I

C

ISN 0048 KMXH-(KMX+I)/2
ISM 0043 KMXL-KMXH
ISM 0050 IF(MOD(KMX.2).NE.O) KMXLuKMXH-1
ISM 0052 IOE m MOD(KMXo2) I '
IS4 0053 KAA a KMXH - 2 - IOE
ISN 0054 KBB - KMXH + 3 I
ISM 0055 KMXM4 a KMX - 4 3
ISM 0055 KOUNT a 0

B-2



C
C
C INPUT VARIABLES EX, G, H, ZLE, ZN, ZT, ZTE,
C THE FORTRAN STATEMENTS IN SUBROUTINE SHAPE,
C AND THE VARIABLES LISTED IN COMNON BLOCK GEOM (IF ONE IS BEING USED)
C ARE ALL SPECIFIC TO THE BLADE SHAPE BEING USED.
C
C
C CALCULATION OF THE BLADE SHAPE
C

ISN 0057 D - CDABS(ZTE-ZLE)
ism 0058 CALL SHAPE(DH,G,EX,ZP,ZS,KJS,KJP)
ISN 0059 SG = DSORT(H*H+G*G)
ISM 0060 SIZE =5.ODO*SG
ISN 0061 ZDA =DCMPLX(G/SG,-H/SG)

ISN 0062 ZGAMNA-DC0N.JG(ZDA)
ISN 0063 WRITE(6,207)
IS~4 0064 207 FORMAT(1H1)
ISN 0065 WRITE(6,206)(ID(I),I-1.36)IISN 0065 206 FORMAT(30X,18A4)
ISN 0067 WRITE(6,240) D.H,G,EX.SG
ISM 006a 240 FORMAT(//1OX,'BLADE-GEOMETRV PARAMETERS ARE!',

* //5X,'ABS(ZTE-ZLE) -',
F.5,' H - ',F1O.S,* G a ',F1O.5,' EX*

IS 06 F10.5,' SLANT GAP '.FO.,//)
ISN 0069WRITE(6,INPUTS)

*ISfl 0070 K3LE - KJP + 2
ISM 0071 KJMI( - KJLE + KJS + 1
ISN 0072 WRITE(6.Z09)
ISM 0073 209 FORMAT( SX.'BLADE COORDINATES:",

*//9X,'SUCTION SIDE' ,/3X,'KJ',7X,'S5,13X,'N' ,13X, 'X' ,13X,'Y' .1)
ISN 0074 ZXY - ZGAMMA*ZLE
ISN 0075 WRITE(6.270) KJLE,ZLE,ZXY
ISM 0076 270 FORMAT(15,1P4EI4.5)
ISM 0077 DO 64 K - I,KJS
ISN 0078 KJ - KPJLE + KIISfl 0079 ZXY - ZGAMMA*ZS(K)I
ISN 0090 WRITE(6,270) KJ,ZS(K),ZXY
ISM 0091 64 CONTINUE
ISM 0082 ZXY - ZGAMMA*ZTE
ISM 0083 WRITE(6,270) KJMX,ZTE ,ZXY
ISM 0084 WRITE(6,271)
ISN 0085 271 FORMAT(//SX,'PRESSURE SIDE-,/3X,-KJ,7X,S,13X,'N',

*13X, X' ,13(, Y' ,/)
ISM 0096 ZXV = ZGAMMA*ZLE
ISN 0097 WRITE(6,270) KJLE,ZLEZXY
ISM 0088 DO 61 K - 1,KJP
isN 0089 KJ - KJLE - K
ISM 0090 ZXY o ZGAMMA*ZPCK)
ISM 0091 WRITE(6,270) KJ,ZP(K),ZXY

LiISM 0092 61 CONTINUE
ism 0093 KJ I
ISM 0094 ZXY =ZGAMMA*ZTE

ISM 0095 WRITE(6,270) KJ,ZTEZXY
C

ISM 0096 ZON - DCMPLX(H,G)
ISN 0097 ZZ - CZT-ZN)/ZDN

ism4 0098 ZTN - ZPI*ZZ
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ISN 0099 CHI - PI*EX*(G*DREAL(ZT-ZN)-H*DIMAG(ZT-ZN))/(SG*SG)
ISN 0100 XA - P*EX*(HDREAL(ZT-ZN)G*DIMAG(ZT-ZN))/(SG*SG)
ISN 0101 R - DEXP(-CHI)
ISN 0102 ZPLUS - DCMPLXCR*DCOS(XA).-R*DSIN(XA))
ISM 0103 R , 1.OD0/R
IS14 0104 ZMINUS- DCMPLX(R*DC0S(XA),R*DSIN(XA))

*ism 0105 00 20 K - 1,KJS
ism 0106 ZZT - (ZS(K)-ZT)/ZDN
ISN 0107 ZETAlS a ZPI*ZZT
ISMI 0108 ZETA2S - CDSIN(ZETA1S)
ISN 0109 ZZN - (ZSCK)-ZN)/ZDN
ISN 0110 ZETA3S - ZPI*ZZN
ISN O111 ZETA4S - CDSIN(ZETA3S)
ISN 0112 ZFS - ZETA2S/ZETA4S
ISM 0113 RDS(K) - CDABS(ZFS)
ISN 0114 THS(K)- DATAN2(DIMAG(ZFS),DREAL(ZFS))
ISN 0115 20 CONTINUE
ISM 0116 DO 24 K - 1,KJP
ISM4 0117 ZZT - (ZPCK)-ZT)/ZDN
ISN 0118 ZETAIP - ZPI*ZZT
ISN 0119 ZETA2P - CDSIN(ZETA1P)
ISN 0120 ZZN - (ZP(K)-ZN)/ZDN
ISN 0121 ZETA3P - ZPI*ZZN
ISM 0122 ZETA4P - CDSIN(ZETA3P)
ISN 012.3 ZFP - ZETA2P/ZETA4P
ISN 0124 RDP(K) - CDABS(ZFP)
ism 0125 THP(K)- DATAN2(DIMAG(ZFP),DREAL(ZFP))
ISIJ 0126 24 CONTINUE

C NOW ADD THE LEADING- AND TRAILING-EDGE POINTS, AND STORE THE G(Z)
C ARRAY AS E(KJ)*EXP(ITHT(KJ)),WHERE KJ=1,KJMX AS YOU GO FROM TE AROUND
C THE PRESSURE SIDE TO THE LE (KJnKJLE) AND THEN ALONG THE SUCTION SIDE
C BACK TO THE TE AGAIN (KJ-KJMX).

ISHI 0127 IF(ITE.EO.1) GO TO 13
ISN 0129 E(1)0O.0J0
ISN 0130 THT(1)mO.ODO
ISN 0131 GO TO 14
ISN 0132 13 ZETAk2-CDSIN(ZPI*CZTE-ZT)/ZDN)
ISM 0133 ZETA4-CDSIN( ZP I*(ZTE-ZN )/ZDN)
ISN 0134 ZFP-ZETA2!ZETA4
ISN 0135 E(l)-CDAQS(ZFP)
ISM 0136 THT(1)nDATAN2(DIMAG(ZFP),DREAL(ZFP))
ISR4 0137 14 IFCILE.EQ.1) GO TO 15
ISM 0139 E(K3LE) - 0.000 5
ISM 0140 THT(KJLE) - 0.000
1514 0141 GO rO 16
ISM 0142 15 ZETA2-CDSIN(ZPI*(ZLE-ZT)/ZDN)
ISM 0143 ZETA4-CDSIN(ZP1

4 (ZLE-ZN)/ZDN)
ISN 0144 ZFP-ZETA2/ZETA4

aISN 0145 E(KJLE) - CDABS(ZFP)
ISM 0146 THT(KJLE) a DATANZ(DIMAG(ZFP),OREAL(ZFP))

*IS3 0147 16 DO 17 K - 1,KJP
ISM 0148 1(3 - KJLE - K
1514 0149 E(KJ)=RDP(K)
ISM 0150 THT(KJ)oTHP(K)
ism 0151 17 CONTINUE
ISM 0152 DO 19 K - 1,K1S
ISN 0153 1(3 * KJLE + K
ism4 0154 E(KJ)-RDSCK)
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ISN 0155 13 THT(KJ)=THS(K)
ISN 0155 E(KJMX) - E(l)
ISO 0157 THT(KJMX" - THT(I)

C
C NOW ADJUST THE BRANCHES OF G(Z) SO AS TO BE CONTINUOUS ACROSS
C THE CUT (ALONG THE NEGATIVE REAL AXIS) OF THE DATAN2 FUNCTION.
C

ISN 0158 IF(H.LT.O.ODO) GO TO 251
ISN 0160 IF(ITE.EQ.1) GO TO 251

C
C FOR COMPRESSORS WfITH A SHARP T. E. , THE CONVENTION IS TO FORCE
C ARG(THT(KJ-2)) TO BE NEGATIVE:
C

ISN 0162 BR = O.ODO
ISN 0163 KA = 3
ISN 0164 PO - THT(2)
ISA 0165 IF(PO.LT.O.ODO) GO TO 252
ISN 0167 BR = -1.0O0
ISM 0168 THT(2) - THT(2) - TPI
IS14 0169 GO TO 252

C
C CONVENTION FOR ALL TURBINES, AND FOR COMPRESSORS
C WITH A ROUND T. E., IS:
C

ISN 0170 251 BR=O.ODO
IS3 0171 KA-3
ISN 0172 IF(ITE.EQ.1) KA=2
ISN 0174 PO-THT(KA-1)
ISN 0175 252 DO 321 KJ-KAKJMX
ISN 0175 CHG=THT(KJ)-PO
ISN 0177 POmTHT(KJ)
ISN 0178 IF(DABS(CHG).LE.PI) GO TO 321
ISA 0180 IF(CHG.GT.PI) BR-BR-I.ODO
ISN 0182 IF(CHG.LT.-PI) BR-BR.I.ODO
ISN 0184 321 THT(KJ)-THT(KJ)+BR*TPI
ISN 0185 DO 323 Kal,KJP
ISN 0185 THP(K) = THT(KJLE-K)
IS,1 0187 3Z3 CONTINUE
ISN 0188 DO 322 K - I,KJS
ISN 0189 THS(K) - THT(KJLE+K)
ISN 0190 322 CONTINUE

C
ISN 0191 DO 25 K a 1,KJS
ISN 0192 ARS - EX*THS(K)
ISN 0193 RS - RDS(K)**EX
ISM 0194 RDSX(K) - RS

ISN 0195 THSX(K) - ARS
ISM 0196 25 CONTINUE
ISN 0197 00 26 K a 1,KJP
ISN 0198 ARP - EX*THP(K)
ISN 0199 RP = RDP(K)**EX
ISM 0200 RDPX(K) a RP
ISN 0201 THPX(K) - ARP
ISN 0202 26 CONTINUE
ISN 0203 WRITE(6,241)
ISN 0204 241 FORMAT(//IOX.'BLADE-SURFACE IMAGES IN THE G - PLANE (RATIO OF-,

* ' SINES) AND CAP OMEGA PLANE(G**l/KAPPA) ,AND',
* // 9X,' RADII AND ANGLES USED IN SELECTING THE PROPER',
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* BRANCHES OF THE RATIO OF SINE FUNCTIONS ARE:'.
*//3X,'K3 .15X,G*.25X.'CAP OMEGA',13X,'R ,11XTHETA-,
*9X,'R**EX'.7X.'THETA*EX',

ISM. 0203 XS-E( 1)*OCOS(THT( 1))
ISM4 0206 VS-E( 1)*DSIN(THT( 1))
ISM 0207 RDTX - E(1)**EX
ISM 0208 THT; - EX*THT(fl
ISM 0209 US - RDTX*DCOS(THTX)
ISM 0210) VS - RDTX*DSIN(THTX)
ISM 0211 WRITE(6,325) (S,VS,US,VS.E(1),THT(1),RDTXTHTX
ISM 0212 232 FORMAT(15.1P8E14.5)
ISN 0213 324 FORMAT(' LE ',1PSE14.5)
ISM 0214 325 FORMAT(' TE ',1P8E14.5)
ISM 0215 KJLM - KJLE -I

ISM1 0216 DO 65 KJ 2.KJLM
ISM1 0217 K -KJLE -J

ISM1 0218 XP =ROP(K)*'OS(THP(K))

ISM 0219 Vp RDP(K)*D5IN(THP(K))
ISN 0220 UP RDPX(K)*OCOS(THPX(K))

I 0221 VP RDPX(K)'DSIN(THPX(K))
ISN 0222 WRITE(6,232)KJXP ,YP,UPVP,ROP(K),THP(K) ,RDPX(K) ,THPX( K)
ISM 0223 65 CONTINUE
ISM 0224 XS - E(JE*CSTTKL)
ISM1 0225 VS - E(KJLE)*OSIN(THT(KJLE))
ISM 0226 RDLX - E(KJLE)**EX
ISM1 0227 THIX - EX*THT(K.JLE)
ISM1 0228 US - RDLX*DCOS(THLX)

ISN 0230 WRITE(6,324)XSVS,US,VS,E(KJLE),THT(KJLE ),RDLX,THLX

ISM1 0231 KJMXM -KJMX - 1
ISN 0232 KJLP *KPJLE 1
ISM1 0233 DO 31 KJ - KJLP,KJMXM
15SM 0234 K =KJ - KJLE
ISM1 0235 XS =RDS(K)*DCOS(THS(K))

ISM 0236 VS =RDS(K)*DSIN(THS(K))

ISM1 0237 US aRDSX(K)*DCOS(THSXCK))

ISM 0238 VS -RDSXCK)*DSIN(THSX(K))

ISM 0239 WRITE(6,232) K3 ,XS.VS,US,VS,RDS(K),THSCK),RDSX(K) ,THSX(K)
ISM1 0240 31 CONTINUE
1ISM 0241 XP - E(K1MX)*DCOS(THT(KJMX))
ISM1 0242 VP - E(KJMX)ODSIN(THT(KJMX))
ISM1 0243 RDT;( - E(KJMX)**EX
ISN 0244 THTX - E,*THT(KJMX;
ISM1 0245 UP - RDTX*DCOS(THTX)
ISM1 0246 VP - RDTX*DSIN(THTX)
ISM1 0247 WRITE(6,325)XP .VP,UP,VP,E(KJMX),THT(KJMX).RDTX,THTX
ISN 0248 WRITE(6,242)ZPLUS,ZMINUS
ISN 0249 242 FORMAT(f/1OX,'POINTS AT INFINITY ARE LOCATED IN THE CAP OMEGA',

PLANE AT:'.

C
C DETERMINATION OF ZC SUCH AS TO MINIMIZE THE RATIO RMAX/RMIN IN THE

L.C. OMEGA PLANE1
C

ISM1 0250 M-1
ISM1 0251 ZE - (ZMGA-ZMGB)/(ZPLUS-ZMINUS)
ISM 0252 ZF - (ZMGA*ZMINUS-ZMG8*ZPLUS)/(ZPLUS-ZMINUS)
ISM1 0253 ZG - (ZMGA*ZPLUS-ZMGB*ZMINUS)/(ZPLUS-ZMINUS)

B- 6



ISM 0254 WRITE(6,601)
ISM 0255 601 FORMAT(1IITER.,I1X'ZD,.22X.ZB',22X,.ZC',18X,ZOMSTR',19X,'ZNTRD-

1/13X, 'RMIN' ,OX. RMAX ,7i(, RATIO'/ (ZA(KJ),KJ-1,KJMX)'
ISM 0256 250 ITER-l
ISN 0257 RATIO=O.ODO
ISN 0258 IFCIGOT.EO.1) GO TO 60

C
C FOR A FIRST GUESS, USE ZCE(-1.0,+1.0)
C

ISN 0260 ZC=CCMPLXC-1.ODO.1.000)
C

ISN 0261 60 ZB - CZMGA*ZPLUS-ZMGB*ZMINUS-ZC*CZMGA-ZMGB) )/(ZPLUS-ZMINUS)
ISN 0262 ZD - (ZPGB*ZPLUS-ZMGA*ZMINUS+(ZMGA-ZMGB)/ZC)/(ZPLUS-ZMINUS)
ISN 0263 68 CONTINUE
ISN 0264 DO 75 K - 1,K35
ISN 0265 RS - RDSX(K)
ISA 0266 ARS - THSX(K)
ISN 0267 ZOMS(K) - DCMPLX(RS*DCOS(ARS),RS*DSIN(ARS))
ISN 0268 ZOMS(K) - (ZD-ZS*ZOMS(K)/ZC)/(Z1-ZOMS(K)/ZC)
131 0269 75 CONTINUE
ISM 0270 DO 85 K - 1.KJP
ISN 0271 RP -RDPX(K)
ISM 0272 ARP - THPX(K)IISMI 0273 ZOV4P(K) - DCMPLX(RP*DCOS(ARP),RP*OSIN(ARP))
ISM 01274 ZOMP(K) - (ZD-ZB*ZOMP(K)/ZC)/(Z1-ZOMP(K)/ZC)
ISN 0275 85 CONTINUE
1S.N 0276 IFCILE.EQ..l) GO TO 11
ISM 0276 ZOMLE - ZB
ISAl 0279 GO TO 12

*ISM 0280 11 RD -E(KJ)LE)
ISNI 0281 TH - THT(KJLE)
ISN 0282 RS - RD**EX
ISM 0283 TN - EX*TH

*IS-1 0284 ZOMLE - DCMPLX(RS*DCOS(TH),RS*DSIN(TH))
ISM 0285 ZOMILE - (ZD-ZB*ZOMLE/ZC)/(Z1-ZOMLE/ZC)
IS"4 0286 12 IF(ITE.EO.1) GO TO 32
IStI 0293 zomTrE - ZD
ISMi 028 ZA(1) - ZOMTE
ISN 0290 GO TO 33
15S1 0291 32 RD-E(I)
ISN 0293 RS=RD**EX
ISM 0292 TH-THTC1)

* ~ISN 0294 TH-EX*TH
ISN 295ZOMTE-DCMPLX(RS*DCOS(TH),RS*DSIN(TH))

IS N 0296 ZOMTE.(ZD-ZB*ZOMTE/ZC)/(Z1-ZOMTE/ZC)IIStI 0297 ZA(l)-ZOMTE
ISN 0298 33 DO 76 KJ =2,KJLM

ISA' 0299 K - KJLE -KJ

*IIS N 0300 76 ZA(KJ) - ZOMP(K)
ISN 0301 ZA(KJLE) a ZOP4LE
ISM 0302 DO 77 K - lKJS
IS~I 0303 KJ - KJLE + K
ISN 0304 77 ZA(KJ) a ZOMS(K)

UISM 0305 ZA(KJMX) a ZAlI)
*IISN 0306 ZNTRD a DCMPLX(0.ODO.0.ODO)

ISN 0307 AREA - 0.000
ISN 0308 RMIN-CDABS(ZA(1))[ISM 0309 RMAX-RMIN
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ISM 0310 ZMAX-ZAC 1)
ISN 0311 ZMIN-ZAC1)
ISII 0312 KJMXX - 1
ISN 0313 KJMN-1
ISN 0314 DO 78 KJ = 2,KJMX
ISM 0315 DAREA - 0ABS(OREAL(ZA(KJ-1))*0IMAG(ZA(KJ))-DREAL(ZA(KJ))*

DINAG(ZA(KJ-1)))/2.ODO
ISM 0316 ZBR - (ZACK3-1)+ZA(KJ))/3.ODO
ISN 0317 ZNTRD - ZNTRD + ZBR*DAREA
ISN 0318 RABS=CDABSCZA(KJ))
ISM 0319 IF(RABS.GE.RMIN) GO TO 79
ISN 0321 RMINwRABS
ISN 0322 ZMIN-ZA(KJ)
ISN 0323 KJMN-KJ
ISM 0324 GO TO 78
ISN 0325 79 IF(RABS.LE.RMAX) GO TO 78
ISN 0327 RMAX-RABS
ISN 0328 ZMAX-ZA(KJ)
ISN 0329 KJMXX - 1(3
ISN 0330 73 AREA a AREA + DAREA
ISN 0331 RATIO-RMAX/RMIN
ISN 0332 ZNTRD a ZNTRD/AREA
ISN 0333 ZOMSTR- ZC*(ZNTRD-ZD)/(ZNTRD-ZB)
ISN 0334 WRITEC 6,602) ITER,ZD,ZB ,ZC ,ZOMSTR,ZNTRDRMIN, RMAX.RATIO,

I (ZA(KJ),KJ-1,KJMX)
ISN 0335 602 FORMAT(/15,1P10E12.4/E17.4,2E12.4/( 10E13.5))
ISN 0336 IF(RATIO.LT.RTOL) GO TO 63
ISN 0338 IF(IGOT.EQ.1) GO TO 63
ISN 0340 ITER - ITER + 1
ISM 0341 IF(ITER.LE.30) GO TO 62
ISN 0343 WRITE(6,204)
ISM 0344 204 FORMAT(///I0X,'TOLERANCE SPECIFIED FOR RMAX/RMIN NOT MET IN,

1 30 ITERATIONS')
ISM 0345 STOP
ISN 0346 62 CONTINUE
ISN 0347 IF(M.EO.2) GO TO 66
ISN 0349 ZDS-..DO*ZMII
ISN 0350 KJ-KJMN
ISN 0351 67 RD-E(I(3)**EX

ISM 0352 TH-EX*THT(K3)
ISN 0353 ZOM-DCMPLX(RDIDCOS(TH).RD*DSIN(TH))
ISN 0354 ZC-(ZOM*(ZDS-ZG).ZE)f(ZDS+ZF-ZE*ZOM)
ISM 0355 GO TO 60
ISM 0356 66 M-1I
ISM 0357 ZDS-0.900*ZMAX
ISN 0358 KJ=KJMXX
ISM 0359 GO TO 67
ISN 0360 63 IGOT a-1
ISM 0361 WRITE(6,208) ZDZB,ZC,ZNTRD,ZOMSTR
ISM 0362 208 FORr4AT(//1OX, 'CONSTANTS FOR MAPPING FROM '

*'Z - PLANE TO OMEGA -PLANE ARE',
/20X,'A a ',1P2E20.5,/20X,'B a ',1P2E20.5./20X,'C ina

* P2E20.5,//20X,'ZNTRD '* ,P2E20.5,/20X,'ZOMSTR =',1P2E20.5)

C
C SET UP THE ARRAYS OF THETA AND LN(R)

ISM 0363 DO 41 Ki - 1IKJMXM
ISN 0364 X(KJ) a DATAN2(DIMAG(ZA(KJ)).DREAL(ZA(KJ)))
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ISN 0365 41 Y(KJ) - CDABS(ZA(KJ))
ISN 0366 X(KJMX) - X(1) + TPI
ISN 0367 Y(KJMX) - Y(l)

C
C NOW ADJUST THE ARGUMENTS OF THE THETA ARRAY, SO AS TO BE CONTINUOUS
C ACROSS THE BRANCH CUT (ALONG THE NEGATIVE REAL AXIS) OF THE
C DATAN2 FUNCTION. THIS ADJUSTMENT ASSUMES THAT THE CONTOUR IS
C TRAVERSED IN A COUNTERCLOCKWISE DIRECTION.
C

ISN 0368 BR - O.ODO
ISN 0369 PO - X(l)
ISN 0370 DO 410 KJ - 2,KJMXM
ISH 0371 IF(DABS(X(KJ)-PO).GT.PI) BR = 1.OO
ISi 0373 PO - X(KJ)
ISN 0374 X(KJ) - X(KJ) + BR*TPI
ISN 0375 410 CONTINUE

C
ISN 0376 RMIN - I0.0D0
ISM 0377 RHAX = 0.000
ISN 0378 DO 49 K - I,KJMX
ISN 0379 IF(V(K).LT.RMIN) RHIN - Y(K)
ISN 0381 49 IF(Y(K).GT.RMAX) RMAX * Y(K)
ISN 0383 WARSCH - DSQRT(RMAX/RMIN) - 1.000
ISM 0384 IF(WARSCH.LT.O.300) ON - 1.ODO
ISN 0386 WRITE(6,202)
ISM 0387 WRITE(6,243)

SISN 0388 243 FORMAT(3X, 'BLADE-SURFACE IMAGE IN THE OMEGA PLANE:',
/3X,,KJ',6X,,REAL ,IOX.,IMAG',12X,,R ,9X,THETA,,/)

ISM 0389 DO 51 KJ a I,KJMX
ISM 0390 WRITE(6,270) KJ,ZA(KJ),Y(KJ).X(KJ)
ISN 0391 51 CONTINUE
ISM 0392 DO 43 KJ a I,KJMX
ISN 0393 43 Y(KJ) - DLOG(Y(KJ))

C
C USE FFT TO FIND A(N) AND B(N)
C
C FIRST SET UP THE CONSTANTS FOR THE LN(R), THETA SPLINE FIT
CISN 0394 CALL CISPLN(Y.X.E.F.KJMX.I,128,1)

ISN 0395 ZI - DCMPLX(O.ODOI.ODO)
ISM 0396 N a 64
ISM 0397 N2 - 128
ISM 0398 NPI a N + I
ISN 0399 NP2 a N + 2

J ISN 0400 PBN - PI/64.000
ISM 0401 NB2 - N/2
ISN 0402 NB2PI - NB2 + 1
ISN 0403 ZNN - DCMPLX(DFLOAT(N),O.ODO)
ISM 0404 ZW2N - DCMPLX(DCOS(PBN),DSIN(PBN))
ISN 0405 OMM - 1.000 - OM

C
ISN 0406 CALL THDGRK

C
C FIND ZETAA AND ZETAB
C

ISM 0407 ZABST - ZMGA
ISN 0408 ZBBST a ZMG8
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ism 0409 RABST a 1.000
ISN 0410 RBBST v 1.000
ISN 0411 DR - 0.1DO
ISN 0412 DTH - 1O0ODO*PI/180.ODO
ISN 0413 THA - -6.ODO*DTH
ISN 0414 DO 21 I - 1,6
ISN 0415 R a .4900 + DR*DFLOAT(I-1)
ISN 0416 DO 22 J a 1,13
ISN 0417 TN a DTH*DFLOAT(J-1) + THA
ISN 041a ZTAGS - CCMPLX(R'DCOS(TH),R*DS!N(TH))
ISN 0419 CALL OMETA(ABZMG ,ZTAGS.ZTANSR.65,1.OD-00.1)
ISN 0420 RA a CDABS(ZMG-ZMGA)
ISN 0421 IF(RA.GT.RABST) GO TO 23
ISN 0423 RABST - RA
ISN 0424 ZABST - ZTAGS
ISM 0425 23 ZTAGS a -ZTAGS
ISNJ 0426 CALL OtETA(A,B,ZMG ,ZTAGS,ZTANSR,66,1.00-00.1)
ISM 0427 RB a CDABS(ZMG-ZMGB)
ISN 0423 IF(RB.GT.RBBST) GO TO 22
ISM 0430 RBBST - RB
ISN 0431 ZBBST a ZTAGS
ISN 0432 22 CONTINUE
ISN 0433 21 CONTINUE
ISA 0434 ZTAGS - ZABST
ISN 0435 M - 0
ISN 0436 CALL OMETA(A,B,Z?4GA,ZTAGSZTANSR,65. 1 OD-05,f4)
ISN 0437 IF(t .EQO) GO TO 260
ISN 0439 WRITE(6,261) ZTAGS,RABST
ISN 0440 261 FORMAT(//SX,'OMETA FAILED TO CONVERGE FOR ZETA A:',

*/IOX,'ZTAGS m ,1IP2EI3.5.' RABST w',E13.5)
ISM 0441 STOP
ISH 0442 260 CONTINUE
ISM 0443 ZETAA a ZTANSR
ISH 0444 ZTA' S - ZBBST
ISN 0445 M aO
IS~f 0445 CALL OMETA(A,B,ZMGB,ZTAGS,ZTANSR,65,1.OD-05,M)
ISM 0447 IF(M.EQO) GO TO 262
ISM4 0449 WRITE(69263) ZTAGS.RBBST
154 0450 263 FORMAT(//5X,'OMETA FAILED TO CONVERGE FOR ZETA B:',

*/IOX.,ZTAGS a '.IPZEI3.5,' RBBST O,E13.5)
ISM 04S1 STOP
ISN 0452 262 CONTINUE
ISM 0453 ZETAB m ZTANSR

C FIND GAMMA, ALPHA, BETA. AND S FOR MAPPING TO ETA - PLANE
C

ISM 0454 AP - CDABS(ZETAA + ZETAB)
ISM 0455 AN m CDABS(ZETAA - ZETAB)
ISM 0456 AS - CDABS(ZETAA*ZETAB)
1ISM 04W CHY w C2.0DO-AP*AP+2.ODO*AB*AB)/AM/AM
IS?4 0456 RT m DSORT(CHY*CHY-L.000)
15:1 0459 CA m OSQRT(DABS(C4Y.RT))
1IS" 0460 CS a DSORT(DABS(CHY-RT))
ISN 0461 SS a DMINI(CA,CB)
ISM4 0462 ZAL a (2.ODO*ZETAA*ZETAB,(SS*SS(ZETAA.ZETAB)-ZETAA-ZETAB)

*/DCONJG(ZETAA))/(SS*SS5(ZETAA-ZETAB)eZETAA.ZETAB-2.ODO/
6DCONJG(ZETAA))

1ISM 0453 ZBT a(2.0DO*ZETAAZETAB-ZAL*(ZETAAZETAB) )fCZETAA4ZETAB-2.0DO
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'ZAL)
ISN 0464 ZGM - SS*(ZETAA-ZBT)/(ZETAA-ZAL)

C
ISM 0465 415 WRZTE(6,245) ZABST
ISN 0466 245 FORMAT(//1OX,*BEST GUESS FOR ZETA A IS ZABST - '.1P2EI2.3)
ISN 0467 WRITE(6,246) ZBBST
ISM 0468 246 FORMAT(//10X,'BEST GUESS FOR ZETA B IS ZBBST a .1IP2E12.3)
ISNl 0469 WRITE(6,215) ZETAA,ZETAB
ISN 0470 215 FORMAT(// SX,'ZETAA u ',1P2E13.5,' ZETAB ' ,2E13.5)
IS41 0471 WRITE(6,2l6) ZAL,ZBT,ZGM,SS
ISM 0472 216 FORMAT(// 5X,'ALPHA - ',IP2EI1.3,' BETA a ,2E11.3.

. GAMMA a ',2E11.3,' S a ,.2E11.3)
C
C FINDING THE LOCATION OF BLADE-SURFACE POINTS IN THE ZETA PLANE ONLY
C INVOLVES PHI(THETA), SINCE R - 1. USE SPLINE INTERPOLATION
C

ISN 0473 PHI(129) - PHI(I) + TPI
ISN 0474 E(129) - E(I) + TPI
ISN 0475 CALL CISPLN(PHI,E,THT,F,129,1,1,2)IISN 0476 CALL CISPLN(PHI,E.X,F.129,2,KJMX,2)

C
C WHEN THE THETA VS. PHI CURVE IS VERY STEEP, IT MAY HAPPEN THAT THE

C SPLINE-FITTED PHI VS. THETA CURVE IS NOT MONOTONIC: CHECK NOW WHETHER
CTHIS HAS HAPPENED, AND REPLACE THE SPLINE-FITTED DATA WITH LINEAR

C INTERPOLATES WHEREVER IT HAS.
C

ISN 0477 DO 810 K - 2,K3MX
ISM 0478 IF(F(K).GE.F(K-1)) GO TO 810IISM 0480 DO 811 I - 2,129
ISM 0481 IF(ECI).GT.XCK)) GO TO 812
ISN 0483 811 CONTINUE
ISN 0484 I1 129IISN 0485 812 IP =I
ISN 0486 IM -1-1

ISM 0487 CON -(PHI(IP)-PHI(IM))/(E(IP)-E(IM))
ISN 0488 3 - K
ISM 0499 DO 815 33 - 1,20

ISN 0490 IF(X(3+JJ).GT.E(IP)) GO TO 816
ISN 0492 815 CONTINUE
ISN 0493 816 KP - 3 + 33 - 1
ISM 0494 DO 817 33 a 1.20
ISN 0495 IF(X(3-33).LT.E( IM)) GO TO 818
ISN 0497 817 CONTINUE

- 1ISN 0498 818 KM - 3 - 33. 1
3ISN 0499 DO a19 33 - KM,KP4ISM 0500 TMP - F(33)

ISN 0501 F(J3) a PHI(IM) + CON*(X(33)-E(IM))
ISN 0502 WRITE(6,813) JJ.F(33),TMP
ISM 0503 813 FORMAT(SX,*NOTE: SPLINE FIT REPLACED BY LINEAR INTERPOLATION IN.,

*FINDING PHIC'.13,') *',F10.5,' OLD PHI =',F1O.5)IISN 0504 819 CONTINUE
ISM 0505 K - KP
ISM 0506 810 CONTINUE

CI'ISM 0507 WRITE(69Z17)
ISM 0508 217 FORMAT(//'I0X,'MAPPING FROM OMEGA - PLANE TO ZETA -PLANE:',

*// 4X,'K,14X,'OMEGA,.26X,'ZETA,.//)

ISN 0509 DO 54 K - 1K3MX
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ISN 0510 R -DEXP(Y(K))
ISN 0511 ZX *DCMPLX(R*DCOS(X(K)),R*DSIN(XCK)))
ISN 0512 ZYG - DCMPLX(DCOS(F(K)),DSIN(F(K)))
ISM 0513 IF(K.EQ.1.OR.K.EQ.KJMX) ZYG - Zi
IS4 0515 ZCC(K) w ZYG
1514 0516 54 WRITE(6,218) K,ZX,ZYG
ISN 0517 218 FORMAT(I5,1P4E15.5)

C
C ZCC NOW CONTAINS ZETA ON THE BLADE SURFACES
C

ISN 0518 WRITE(6.202)
C
C NOW DO THE MAPPING FROM THE ETA -PLANE TO THE KSI TILDE -PLANE,

C WHERE ETA/S a SN(KSI TILDE)
C

ISN 0519 AK -SS*SS

ISM 0520 AKO *AK*AK
ISN 0521 AKP -DSORTC1.ODO-AKQ)

ISN 0522 AKM =AKP*AKP
ISN 0523 CALL ELLPTCPIAK,RL,1)
ISM 0524 TBK - 2.GDO*RL
ISN 0525 CTR - -RL
ISN 0526 CAPK a RL
ISM 0527 CALL ELLPT(PI.AKP,RL,1)
ISN 0528 CAPKPM - RL
ISN 0529 WRITE(6,222) AK,CAPI(,AKP,CAPKPM
ISN 0530 222 FOR.MAT(//IOX. 'COMPLETE ELLIPTIC INTEGRALS OF K AND K PRIME',

*'ARE AS FOLLOWS:*,
/IOX, 'K( ' ,FO.6, ') - ' ,FI0.6,5X, 'K( ',FIO.6,') ='JIO.6)

ISN 0531 IFINO
1514 0532 DO 55 1 - 1,K.JMX
ISN 0533 ZACI) a ZGM*(ZCC(l)-ZAL)I(ZCC(I)-ZIIT)

C
C ZA(I) NOW HOLDS ETA
C

ISM4 0534 ZTD - ZA(!-)/SS
ISM 0535 TAU - DREAL(ZTD)
ISN 0536 OLT - DIMAG(ZTD)
ISM4 0537 TSO - TAU*TAU
1514 0538 DSO - DLT*DLT
ISN 0539 ART - 1.ODO + AKQ*(TSO + DSO)
ISN 0540 RT a DSQRTCC1.00AKO*TSQ)*(1.ODO-AKQ*TSO) + AKO*DSO*(2.ODO*

*(1000O+AKO*TSO)

* AKQ*DSO))

ISM4 0541 BRO a 1.000 + TSO + DSO
IS14 0542 BRT - OSORTIC1.OD0-TSQ)*(1.ODO-TSO) + DSQ*(DSQ,2.ODO+2.ODO*TSO))
ISM4 0543 ALM - (BRO-BRT)*(ART-RT)/4.0DO/AKQ/TSQ J
ISN 0544 SGA - (TSO + DSO -ALM)
ISM4 0545 SGA - SGA/(SGA.1.0DO-ALM*AKQ*(TSQeDSO))
ISM4 0546 IF(TAU.E.Q.0.00O) GO TO 403 I
ISM 0548 RTALM - DSORT(ALM)*TAU/DABS(TAJ)
ISM 0549 GO TO 404 I
ISM 0550 403 RTALM a 0.000
15S4 0551 404 SGN - 1.000
is" s5Z IF(DLT.LT.0.000) SGN - -1.00

I SN 0554 RTSGA a SGN*DSORT(SGA)
ISM 0555 RTALM a DARSIN(RTALM)
ISM 0556 RTSGA a DARSIN(RTSGA)
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I

ISN 0557 CALL ELLPT(RTALMAK,RL,0)

ISN 0558 CALL ELLPT(RTSGAAKP,AG,0)
ISN 0559 IF(AG.GE.O.ODO) GO TO 57
ISN 0561 AG - -AG
ISM 0562 RL --RL - TBK
ISN 0563 57 ZAI(I) - DCMPLX(RL,AG)
ISN 0564 IF(IFIND.EQ.I) GO TO 55
ISM 0566 IF(I.EQ.I) GO TO 55
IS 0568 IF((RL-DREAL(ZAI(I-1))).LT.O.ODO) GO TO 55
ISN 0570 KEDGE = I
ISI 0571 KGM - I - 1
ISN 0572 IFIND = 1
ISN 0573 55 CONTINUE

C
C ZAI(I) NOW HOLDS KSI HAT
C

ISN 0574 WRITE(6,219)
ISN 0575 219 FORMAT(////IOX,'MAPPING FROM THE ETA - PLANE TO THE KSI HAT -

*'PLANE',
/// 4X,'K',I5X,'ETA',25X,'KSI HAT',//)

ISM 0576 DO 56 K = 1,KJMX
ISN 0577 WRITE(6,218) K,ZA(K),ZAI(K)
ISN 0578 56 CONTINUE

C
C NOW SET UP A GRID IN THE KSI-HAT PLANE, AND MAP IT BACK
C TO THE Z - PLANE:
C

ISM 0579 WRITEI6,202)
ISN 0580 WRITE(6,205)
ISM 0581 205 FORMAT(/SX,'MAPPING OF A GRID IN THE KSI-HAT PLANE',

* //3X,'K L', 8X,'KSI HAT',
15X,'ETA',16X,'ZETA',16X,'OMEGA',

. 13X,'Z MAPPED',14X,'ZXY',//)
ISM 0582 ZA2(I) - ZTE
ISN 0583 ZA2(KJMX) w ZTE
ISN 0584 ZA2(KJLE) = ZLE
ISN 0585 DO 91 KJ - 2,KJLM
ISN 0586 K - KJLE- KJ
ISN 0587 91 ZA2(KJ) - ZP(K)
ISM 0588 DO 92 K = IKJS
ISN 0589 KJ a KOLE + K
ISN 0590 92 ZA2(KJ) - ZS(K)

C
: C THE ZA2 ARRAY NOW HOLDS THE BLADE-SURFACE COORDINATES, IN THE ORDER:j C KJ a 1: TE

C KJ a 2,KJLM: PRESSURE SIDE, FROM TE TO LE
C KO = KJLE: LE
C KJ a KJLP,KJMXM: SUCTION SIDE, FROM LE TO TE
C KJ a KJMX: TE AGAINjI C

ISM 0591 KMXMI a KMX - 1
ISN 0592 LMXMI w LMX - I

I ISM 0593 HCPKPM - CAPKPM/2.ODO
ISM 0594 TWOCPK w 2.ODO*CAPK
ISM 0595 THCPK a 3.0DO'CAPK
ISM 0596 FCPK = 4.00O'CAPK
ISM 0597 ZAG = ZAL*ZGM
ISM 0590 EXINV IODO/EX

B1
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ISN 0599 DXIR *FCPK/DFLOAT(KMXN1)
1514 0600 SHXTE -DREAL(ZAI(l))
ISN 0601 IF{SHXTE.GT.CTR) SHXTE a SHXTE-FCPK
ISM 0603 SHK - -CAPKPM*CAPKPM/4.0D0/(THCPK +SHXTE)
ISM 0604 SHKINV - 1.ODO/SHK
ISM 0605 IF(ISHEAR.EO.0) SHKINV - 0.000
ISN 0607 DSNX - 2.000/0FLOAT(KMX4I)
ISI 0608 OSHY - 1.ODO/OFLOAT(LMXM1)
ISN 0609 ZEETE w ZA~i)
ISN 0610 10 =0

ISN 0611 K *I
ISM 0612 L I

C
C K -LOOP STARTS HERE
C

ISM 0613 760 CONTINUE

C USE LINEAR INTERPOLATION TO GIVE A FIRST GUESS AT Z ON THE
C BLADE SURFACE

ISN 0614 XIR - SHXTEDFLOAT(K-1)ODXIR
ISM 0615 IF(XIR.LT.-THCPK) XIR - XIR +FCPK
ISM 0617 IF(XIR.GT.CAPK) XIR a XIR - FCPK
ISN 0619 DO 371 1 - KEDGEKJMX
ISN 0620 IF(DREAL(ZA1Il)).LT.XIR) GO TO 372
ISA 0622 371 CONTINUE

*ISN 0623 DO 373 I - 2,KGM
ISM 0624 IF(DREAL(ZA1(Il.LT.XIR) GO TO 372

*ISM 0626 373 CONTINUE
*ISN 0627 1 KEDGE

ISM 0629 372 KA =I

ISN 0629 KBS I - 1
*ISN 0630 XIA - DREAL(ZAI(KA))

ISM 0631 XIS n DREAL(ZAI(KB))
ISM 0632 IF(KA.NE.KEDGE) GO TO 380
153i 0634 IF(XIA.LT.0.000)XIA - XIA + FCPK
ISN 0636 IF(XIB.LT.0.000)XIB a XIS + FCPK
ISM4 0638 IF(XIR.LT.0.000)XIR - XIR + FCPK
ISH 0640 380 ZGSA w ((XIR-XIA)*ZAZ(KB),(XIB-XIR)*ZA2(KA))/(XIB-XIA)

CS 061 31ZSZS
ISN 0642 SHX - -1.0DO+OSHXODFLOAT(K-1)

C L -LOOP STARTS HEREj
C

ISI 0643 770 CONTINUE
ISN 0644 SHY-DSHY*DFLOAT(L-1)
IS11 0645 XIt4.CPKPM*(l.OD0-SHY)
ISN 0646 XIR m (XIM-HCPKPM)**2I
ISM 0647 XIR a SHXTE. TWOCPK*C1.ODOSHX),XIR*SHKINV
ISM 0648 ZXI a DCMPLX(XIR,XIM)

C
C BYPASS IMAGE CALCULATIONS FOR POINTS THAT FALL ON THE IMAGES OF
C PLUS OR MINUS INFINITY OR THE T.E.

ISM 0649 IF(ISHEAR.EQO0) GO TO 84
is" 0651 IF(L.EQ.1.AMD.K.EO.1) GO TO 73 /
ISN 0653 IF(L.EQ.1.AMO.K.EQ.KMX) GO TO 73
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ISN 0656 84 CONTINUE
ISN 0656 IF(L.EO.LMX.AMD.K.EO.1) GO TO 74
ISN 0658 IF(L.EO.LMX.AND.K.EO.KMX) GO TO 74
ISN 0660 IF(IOE.EQ.0) GO TO 80
I SN 0662 [F(L.EO.LMX.ANID.K.EQ.KMXH) GO TO 81
ISN 0664 GO TO 80

C
C
C4 SN 0665 73 ZEETA ZEETE

ISM 668 FNL DCMPLX(SHX,SHY)
ISM 0669 ZXY -ZTE*ZGA4MA
ISN 0670 GO TO 710
[SN 0671 74 ZEETA =DCMPLX(SS,0.ODO)
[SN 0672 ZETA =ZETAA
ISM 0673 ZOMA =ZMGA

ISM 0674 ZFNL -DCNPLX(SHX,SHY)
ISN 0675 ZXY -2.0D0*ZA(LMX-1)-ZA(LMX-2)
[SN 0676 GO TO 710
[SN 0677 81 ZEETA -DCMPLX(-SS,O.ODO)IISM 0676 ZETA -ZETAB
ISN 0679 ZOMA *ZMGB
ISN 0680 ZXY = 2.D0*ZA(LMX-1)-ZA(LMX-2)
ISN 0681 ZFNL -DCMPLX(SHX,SHY)

ISN 0682 GO TO 710

[SN 0683 80 CONTINUE
I SN 0684 CALL JCELFN(XIR,XIMAKQ,AKM.RLSAGS.1)
ISN 0685 ZEETA =SS*DCMPLX(RLS,AGS)
ISN 0686 ZETA u(ZBT*ZEETA-ZAG)/IZEETA-ZGM)
ISN 0687 CALL OMETA(A.8.ZOMA.ZETA.ZTANSR.65.1.0D-OO,1)I C NOW DO THE NEWTON-RAPHSON ITERATION TO FIND Z, GIVEN ZBOMK

C
[SN 0689 Z3OM.ZC*(ZOMA-ZD )/(ZOMA-ZB)
[SN 0689 RAO - CDABS(ZBOM)
ISN 0690 ARG - DATAN2(D[MAG(Z8OM.,DREAL(ZBOM))
ISN 0691 RADO a RAD**EXINV
ISN 0692 ARGO a EXINV*ARG

ISN 0693 ZIOMK - DCNPLX(RADO*DCOS(ARGO),RADO*DSIN(ARGO))
ISN 0694 ITal
ISN 0695 90 Z - ZGS
ISN 0696 ZZT a (Z-ZT)/ZDN
I SN 0697 ZT1 - ZPI*ZZT
ISN 0698 ZT2 - CDS[N(ZTI)
ISN 0699 ZZN a (Z-ZN)IZDN

ISN 0701 ZT4 a COS[N(ZT3)

ISM 0702 ZF-ZT21ZTJ-Z&OMK
Il SN 0703 37 ZFPM - ZPI*CDS[N(ZTN)/ZDN/ZT4/ZT4
ISN 0704 ZMEW a Z - ZFIZFPM
ISN 070S [F(KNR.EQO) GO TO 3
ISM 0707 IF(KOUNT.EQO) WRITE(6.211)
ISN 0709 211 FORM4AT(//SX.*D[AGNOST[C OUTPUT OF THE NEWTON-RAPHSON [TERATIONS:,,
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* /5X.'VARIABLES PRINTED ARE IT,ZBOMK,Z,ZNZW,ZFZFPM',//)
ISN 0710 WRITE(6.212) IT,ZBOMK,ZZNEW,ZF,ZFPM
ISN 0711 212 FORMAT(I5.IPIOE12.3)
ISN 0712 KOUNT - KOUNT + 1
ISN 0713 IF(KOUNT.GT.INR) STOP
ISN 0715 83 CONTINUE
ISil 0716 IT = IT + 1
ISN 0717 ZGS " ZNEW
ISN 0718 IF(CDABS(ZNEW-Z).LT.I.OD-06) GO TO 72
ISM 0720 IF(CDABS(ZGS).GT.SIZE ) ZGS - ZGSA
ISN 0722 IF(IT.LE.50) GO TO 90
ISM 0724 82 ZGS - ZGSA
ISN 0725 ZNEW - ZERO
ISN 0726 IF(L.EO.1) ZNEW-ZGSA
ISN 0728 72 CONTINUE

ISC 0729 ZFNL - OCMPLX(SHX,SHY)
ISN 0730 ZXY-ZGAMAZNEWYC

C CHECK POINTS ON THE PERIODIC BOUNDARY, NEAR Kul, K=KMX, AND KuKMX/2

C
ISN 0731 IF(ISHEAR.EO.O) GO TO 710
ISN 0733 IF(L.NE.LMX) GO TO 710
ISN 0735 IF(K.EO.I.0R.K.EQ.KMX) GO TO 710
ISN 0737 IF(K.GT.4) GO TO 711
ISM 0739 714 DY - DIMAG(ZXY-ZT)
ISN 0740 IF(DY.GE.O.00) GO TO 717
ISM 0742 ZXY - ZXY + ZI*SG
ISN 0743 GO TO 714
ISM 0744 717 IF(DY.LE.SG) GO TO 710
ISN 0746 ZXY - ZXY - ZI*SG
ISN 0747 GO TO 714
ISA 0748 711 IF(K.GE.KAA) GO TO 712
ISN 0750 GO TO 710
ISM 0751 712 IF(K.GT.KMXH) GO TO 713
ISN 0753 IF(K.EQ.KMXH.AND.IOE.EQ.I) GO TO 710
ISN 0755 718 DY - DIMAG(ZXY-ZN)
ISM 0756 IF(DY.GE.O.ODO) GO TO 719
ISM 075a ZXY - ZXY # ZI*SG
ISN 0759 GO TO 718
ISN 0760 719 IF(DY.LE.SG) GO TO 710
IS, 0762 ZXY a ZXV - ZI*SG

ISN 0763 GO TO 718
ISN 0764 713 IF(K.GT.KBB) GO TO 715
ISN 0766 720 DY - DIMG(ZN-ZXY)
ISM 0767 IF(DY.GE.O.ODO) GO TO 721
ISN 0769 ZXY - ZXY - ZI*SG
ISN 0770 GO TO 720
ISN 0771 721 IF(DY.LE.SG) GO TO 710
ISN 0773 ZXY a ZXY + ZI*SG
ISN 0774 GO TO 720
ISN 0775 715 IF(K.LT.KMXM4) GO TO 710
IS"i 0777 722 DY a DIMAG(ZT-ZXY)
ISN 0776 IF(DY.GE.O.ODO) GO TO 723
ISN 078:) ZXY a ZXY - ZI*SG
ISN 0781 GO TO 722
ISN 0732 723 IF(DY.LE.SG) GO TO 710
ISM 0784 ZXY ZXY- ZI*SG J
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ISN 0785 GO*To 722
C
C
C

ISM 0796 710 WRITE(6,224) K.L.ZXI,ZEETA.ZETA,ZOMAZFNL,ZXY
ISM 0787 ZA(L) - ZXY
ISN 0788 XXIILL) - DREAL(ZXV)
ISM 0789 YY(K,L) - DIMAG(ZXY)
ISM 0790 71 CONTINUE
ISN 0791 IF(Io.Ea.l) GO TO 790
ISN 0793 L - L + 1
IS34 0794 IF(L.LE.LMX) GO TO 770
ISN 0795 WRITE(6,20Z)
ISM 0797 IF(PNCHZA) WRITE(7,210) (ZA(L),L-1.LMX)
ISM 0799 K - K + I
ISM 0800 L - I
ISM 0801 IF(K.LE.KMX) GO TO 760
ISM 0803 70 CONTINUE

C
C NOW LOOK FOR CASES WHERE ZXV - ZERO, AND TRY AGAIN, USINIG
C INTERPOLATION FROM ALL NEIGHBORING POINTS

IISN 0804 WRITE(6,214)
ISN 0805 214 FORMAT(//5X,'SECOND ATTEMPT TO FIND NON-CONVERGENT CASES'.//)
ISM 0806 WRITE{6,Z05)
IS4i 0807 DO 750 K - 1.KMXIISM4 0808 DO 755 L a 2,LMX
ISMI 0809 IF(XX(K,L).NE.O.ODO) GO TO 755
ISM 0811 IF(YY(K,L).NE.0.ODO) GO TO 755
ISN 0813 10 - I
ISH 0814 Li - L
1S'4 0815 K! K
ISN 0816 KM - K - I
ISMI 0817 KP - K + 1
ISN 0818 IF(K1.EQ.1) KM - KMX - 1IISM 0820 IFCKZ.EQ.KMX) KP - 2
ISN 0822 LM - L - I
ISM 0823 LP - L + I
IS.I 0824 Zil - DC,%PLX(VX(KM,LM),YY(KMLM))
ISA' 0825 Z22 a DCMPLX(XX(K1,LM),YY(K1.LM))
ISM~ 0826 Z33 - DCt4PLX(XX(KP.L14),YY(KP,L4))
ISM 0827 Z44 a DCMPLX(XX(KMLI).YY(KM,L1))
ISM 0828 Z55 a DCMPLX(XX(KP,L1),YY(KP.LI))
ISN 0829 IF(LI.EQ.LMX) GO TO 7S6
ISN 0831 Z66 a DCiPLX(XX(KMLP),YY(KM,LP)
ISN 0832 Z77 - DCMPLX(XCX(K1,LP),YY(K1.LP))
ISM 0833 ZOO a DCMPLX('(X(KP.LP),YY(KP,LP))
ISM 0834 ZGSA a (Zll.ZZ2+Z33.Z44+ZS5.Z66+Z77.Z88)/S.0DO
ISn 0833 GO TO 381
ISM 083i 756 ZGSA - (ZI1.ZZ24Z33.Z44+Z55)/5.OD0
ISMI 0837 GO TO 381
ISM 0838 790 CONTINUEJISM 0839 755 CONTINUE
ISM 0840 750 CONTINUE
ISM 0841 STOP
IS~I 0842 100 FORMAT(OFI0.4)

IISN 0843 202 FORMAT(//'/)
ISN" 0844 210 FORMAT(1P4E20.13)

ISM4 0845 224 FORMAT(214,12F10.5)
ISM 0846 END
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LEVEL 21.7 ( DEC 72 ) 0S/360 FORTRAN H

COMPILER OPTIONS - NAME= MAIN,OPT-02,LINECNT-60,SIZE-OOOOK.
SOURCEEBCDIC,NOLIST,NODECKLOAD,MAPNOEDIT.ID,XREF

ISfi 0002 SUBROUTINE CISPLN(Y,X,E,F,NP,IRTN,NRTN.NPD)
C
C THIS SUBROUTINE FITS A CUBIC SPLINE TO A FUNCTION Y(X), DEFINED BY
C NP PAIRS OF POINTS. THE SECOND DERIVATIVE OF THE FUNCTION
C IS PERIODIC, WITH PERIOD 2*PI. IF NPD - 1. THE FUNCTION
C ITSELF IS ALSO PERIODIC, WHILE IF NPO - 2, THE FUNCTION INCREASES
C BY 2.*PI EVERY PERIOD: Y(X+2.*PI) a Y(X) + 2.*PI. SOLUTIONS FOLLOW
C PAGES 9 - 15 OF
C THE THEORY OF SPLINES AND THEIR APPLICATIONS, BY J. H. AHLBER.,
C E. N. NILSON, AND J. L. WALSH, ACADEMIC PRESS, 1967
C
C
C NOTE THAT Y,X,E.AND F ARE, RESPECTIVELY, ORDINATE, ABSCISSA,ABSCISSA,
C AND ORDINATE.
C

ISN 0003 IMPLICIT REAL*8(A-H,O-Y),COMPLEX*16(Z)
ISN 0004 DIMENSION Y(160),X(160),E(160),F(160),BDA(160),EM(160),H(160)
ISN 0005 DIMENSION S(130),T(160),V(160),D(I60)
ISN 0006 DATA TPI/6.283185307179586/

C
C THIS SECTION (ENTERED WHEN IRTN - 1) USES THE NP PAIRS OF INPUT
C COORDINATES X AND Y TO FIND THE COEFFICIENTS OF THE SPLINE FIT.
C
C THESE COEFFICIENTS - HERE CALLED EM(KJ) - ARE THE SECOND DERIVATIVES
C OF THE FUNCTION.
C
C

ISN 0007 IF(IRTN.EQ.2) GO TO 20
ISM 0009 NPM - NP - I
ISN 0010 N a NP + 1
ISN 0011 DO 1 KJ - 2,NP
ISN 0012 1 H(KJ) a X(KJ) - X(KJ-I)
ISN 0013 H(N) - H(2)
ISM 0014 DO 2 K3 a 2,NP
ISN 0015 2 BDA(K3) - H(K3+I)/(H(KJ)+H(KJ+I))
ISM 0016 E(l) - O.ODO
ISN 0017 F(1) - O.ODO
ISN 0018 S(1) - I.ODO
ISN 0019 DO 3 K = 2,NPM I
ISN 0020 DN = 2.ODO + (1.0D0 - BDA(K3))*E(KJ-1)

ISN 0021 E(KJ) - -BDA(KJ)/DN
ISH 0022 D(K) -

* 6.ODO*((Y(KJ+I )-Y(K3))/H(K+1 )
* -(Y(KJ)-Y(KJ-1))/H(KJ))/(H(K3)+H(KJ+I))

ISM 0023 S(KJ) a -(1.090-BDA(KJ))*S(KJ-I}/DN
ISN 0024 3 F(K3) - (D(KJ)-(I.0DO-BOA(K3))*F(KJ-1))/DN
ISN 002S Y(N) - Y(2)
ISM 0026 IF(NPD.EQ.2) Y(N) - Y(N) + TPI
ISN 0028 D(NP) a 6.0DO((Y(N)-Y(NP))/H(2)

* -(Y(NP)-Y(NPM))/H(NP))/(H(NP)+H(2))

ISN 0029 NPMM NP - 2
ISN 0030 T(NP) " 1.0D0
ISM 0031 V(NP) - 1.0DO
ISM 0032 DO 6 I - 1,NPMM
ISM 0033 K3 - NP-I
ISM 0034 T(K3) = E(K)*T(K3+I) + S(KJ)
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IS4 0035 V(K) a E(KJ)*V(KJ,1) + F(KJ)
ISN 0035 6 CONTINUE
ISN 0037 EM(NP) - (D(N?)-BDA(NP)*V(2)-(1.0D0-BDA(NP))*V(NPMfl/

*(BDA(NP)*T(2),(l.ODO-BDA(NP))*T(NPM) + 2.000)
ISr. 0038 00 4 1 - 1,NPM
ISN 0039 KJ - NP - I
ISN 0040 4 EM(KJ) - E(KJ)*E14(KJ+1) + F(KJ) + S(KJ)*EM(NP)
ISN 0041 SIZE - DABS(X(NP)-X(l))/1O.ODO
ISN 004Z RETURN

C
C THIS SECTION (ENTERED WHEN IRTN - 2) RETURNS NRTN INTERPOLATED
C VALUES OF THE ORDINATE F AT ASSIGNED VALUES OF THE ABSCISSA E.
C

ISN 0043 20 KJ = 2
ISN 0044 DO 21 J a I,NRTN
ISN 0045 A - E(J)
ISN~ 0046 24 IF(A.LE.XC(VJ)) GO TO 23
ISN 0048 KJ - KJ + 1

ISN 0049 IF(IKJ.LE.NP ) GO TO 24
ISN 0051 DF = A - X(NP)
ISN 0052 IF(DF.GT.SIZE) WRITE(6,200) J,E(J),NP,X(NP)
ISN 0054 200 FORMAT(//1OXWARNING - ENTRY IN CISPLN EXCEEDS END OF BASE '

'ARRAY',/5X.,E(,.13,') - ',1PE16.8,' EXCEEDS X(',13,')-

ISN 0055 OF - A - X(I)
ISH 0056 IF(DF.LT.(-SIZE)) WRITE(6,201 )J,E(J),X( 1)IISN 0058 201 FORMAT(//1OX,.WARNINQk - ENTRY IN CISPLN IS LESS THAN THE FIRST',

*BASE POINT',
*/5X,'E(,13,') - ',1PE16.8,' IS LESS THAN X(l) - '.E16.8)

ISN 0053 KJ =NP

ISN 0060 23 DXA M (J) - A
I:N 006i DXB =A - XCKJ-1)
*!! 0062 CBA -DXA*DXA*DXA

ISN 0063 CBB -DXB*DXB*DXB

ISN 0064 F(J) =(EM(KJ-1)*CBA+EM(KJ)*CBB)/6.OD0/H(K3)
*+ D)A(Y(KJ-)-EM(KJ-1)*H(KJ)*H(K3)/6.ODO)/H(KJ)
*+ DXB*(Y(KJ)-EM(KJ)*H(KJ)*H(KJ)/6.0DO)/H(KJ)

ISN 0065 21 CONTINUE
ISN 0066 RETURN
ISN 0067 END

B-19



LEVEL 21.7 ( DEC 72 ) 0S/360 FORTRAN H

COMPILER OPTIONS - NAME- MAINOPTsO2,LINECNT-60,SIZE.OOOOK,
SOURCEEBCDICNOLIST.NODECKLOADMAP.NOEDIT.ID,XREF

ISN 0002 SUBROUTINE ELLPT(AR,AK,ANS,KOMP)
ISN 0003 IMPLICIT REAL*9(A-H,O-Y).COMPLEX*16(Z)
ISN 0004 DIMENSION SQ(12)
ISN 000i DATA K/I/
ISM 0006 DATA PI/3.141592653589793/

C
C THIS SUBROUTINE EVALUATES THE ELLIPTIC INTEGRAL OF THE FIRST KIND,
C WITH ARGUMENT AR (AN ANGLE IN RADIANS), AND PARAMETER AK (A REAL
C NUMBER).
C THIS EVALUATION USES EO.(14) OF: Y. L. LUKE. 'APPROXIMATIONS
C FOR ELLIPTIC INTEGRALS', MATH. COMP., VOL. 22 (JULY 1968), PP 627-
C 634, WITH N = 12.
C KOMP - 0,1 FOR THE INCOMPLETE, COMPLETE INTEGRAL, RESPECTIVELY.
C

IS" 0007 IF(K.GT.1) GO TO 11
ISN 0009 K - 2
ISN 0010 TNP - 25.000
ISN 0011 DO 10 M - 1,12
ISM 0012 THM - PI*FLOAT(M)/TNP
ISN 0013 S - DSIN(THM)
ISN 0014 10 SO(14) - S*S
ISN 0013 I1 AKK = AK*AK
ISA 0016 SM - 0.000
ISAl 0017 IF(KOMP.EO.1) GO TO 40
ISN 0019 TN - DTAN(AR)
ISM 0020 DO 20 M w 1,12
ISN 0021 SG - DSQRT(1.ODO-AKK*SQ(M))
ISN 0022 T - DATAN(SG*TN)
ISN 0023 20 SM = SM + T/SG
ISN 0024 ANS - (AR + 2.ODO*SM)/TNP
ISN 0025 RETURN

ISN 0026 40 DO 41 M 1,12
ISN 0027 SG - DSQRT(I.0D0-AKK*SO(M))
IS 0028 41 SM - SM + 1.ODO/SG
ISO 0029 ANS - PI*(I.ODO2+.ODOSM)/2.ODO/TNP
ISN 0030 RETURN
ISJ 0031 END
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LEVEL 21.7 ( DEC 72 ) 0S1360 FORTRAN H

COMPILER OPTIONS - NAMEs MAINOPT-02.LINECNT-60,SIZE-OOOOK,
SOURCE,EBCDICNOLIST,NODECK,LOAD,MAP,NOEDIT,ID,XREF

ISM 0002 SUBROUTINE JCELFN(RL,AGAKOAKM,RLS,AGS,M)

C WHEN M.EQ.1,
C THIS SUBROUTINE RETURNS THE JACOBIAN ELLIPTIC SINE
C OF A COMPLEX ARGUMENT:
C RLS + I*AGS = SN(RL + I*AG,K)
C USING THE ARITHMETIC - GEOMETRIC MEAN FORMULA (SEE P.571, HANDBOOK
C OF MATHEMATICAL FUNCTIONS, ED. BY M. ABRAMOWITZ AND I. A. STEGUN,
C U.S. NATIONAL BUREAU OF STANDARDS, APPLIED MATHEMATICS SERIES, 55,
C JUNE 1964) AND THE ADDITION FORMULA FOR THE SN (SEE EQUATION 125.01
C P. 24, OF HANDBOOK OF ELLIPTIC INTEGRALS FOR ENGINEERS AND
C PHYSICISTS, BY P. F. BYRD AND M. D. FRIEDMAN, SPRINGER VERLAG, 1954).
C AKO - K**2, AKM a 1. - K**2
C
C WHEN M.EQ.2, THE QUANTITIES RETURNED ARE THE REAL AND IMAGINARY PARTS
C OF THE PRODUCT CN(..)*DN(..), WHICH IS THE DERIVATIVE OF THE SN(..)
C

ISM 0003 IMPLICIT REAL*S(A-H,O-Y),COMPLEX*16(Z)
ISN 0004 DIMENSION A(20),B(20),C(20),PH(20)
ISN 0005 K - I
ISN 0006 A(I) - 1.0DO
ISN 0007 B(1) - DSORT(AKM)
ISN 0008 C(I) - DSQRT(AKQ)
ISM 0009 5 DO 6 I - 2,20
ISHI 0010 A(I) - (A(I-1)+B(I-1))/2.ODO
ISN 0011 B(I) -DSQRT(A(I-I)*B(I-1))
IS 0012 C(I) w (A(I-1)-B(I-1))/2.0DO
ISN 0013 IF(DABS(C(1)).LT.I.OD-09) GO TO 7
ISN 0015 6 CONTINUE
ISM 0016 WRITE(6,200) RL,AG
ISN 0017 200 FORMAT(///IOX,'JCELFN FAILED TO CONVERGE FOR Z - '.IP2E15.4)
ISM 0018 STOP
ISN 0019 7 NM = I-1
ISN 0020 N a I
ISM 0021 IF(K.EQ.2) GO TO 20
ISN 0023 PH(N) a A(N)*RL*2**NM
ISI 0024 15 DO 11 L w 1,NM
ISM 0025 J - N - L
ISM 0026 11 PH(J) ( CPH(+1)+DARSIN(C(C+I)*DSIN(PH(J+I))/A(J+I)))/2.ODO
ISN 0027 IF(K.EQ.2) GO TO 40
ISM 0029 SNK a DSIN(PH(1))
ISJ 0030 CNK - DCOSCPHC ))
ISN 0031 DNK - CNK/DCOS(PH(2)-PH(1))
ISM 0032 K - 2
ISM 0033 TMP - B(1)
IS% 0034 8(1) - C()
ISM 0035 C() - THP
ISM 0036 GO TO 5
ISM 0037 20 PH(N) a A(N)*AG*2**NM
IS 0038 GO TO 15
ISM 0039 40 SNP - OSIN(PH(1))
ISM 0040 CNP a OCOS(PH(1))
ISM 0041 DNP a CNP/DCOS(PH(2)-PH(1))
ISA 0042 NM a 1.0D0 - SNP*SNP*DNK*DNK
ISA 0043 IF(M.EG.2) GO TO 50
ISN 0045 RLS - SNK*DNP/DNM

B2
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ISN 0046 AGS -CNK*DNK*SNP*CNP/DNM
ISN 0047 RETURN
ISM 0049 So RLA a CNK*CNP
ISN 0049 AGA = SNK*DNK*SNP*DNP
ISN 0050 RLB - DNK*CNP*DNP
IS~i 0051 AGB - AKQ*SNK*CNK*SNP
ISN 0052 RLS - (RLA*RLB-AGA*AGB)/DNM/DNM
ISN 0053 AGS w C-RLA*AGB-RLB*AGA)fDNM/DNM
ISM 0054 RETURN
ISM 0055 END
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LEVEL 21.7 ( DEC 72 ) OS/360 FORTRAN H

JCOMPILER OPTIONS - NAMEw MAIN,OPT-02,LINECNT-60,SIZEOOOOK,
SOURCEEBCDIC,NOLISTNODECK,LOAD.MAPNOEDIT,ID,XREF

ISN 0002 SUBROUTINE OMETA(AB,ZMGA,ZTAGS,ZTANSR,N,EPS,M)
ISN 0003 IMPLICIT REAL*8(A-H.O-Y),COMPLEX*16(Z)
ISM 0004 DIMENSION A(65),B(65),ZC(65)

C
C IF M.EQ.O,
C THIS SUBROUTINE USES NEWTON - RAPHSON TO FIND ZETA(OMEGA): ZMGA IS A
C KNOWN VALUE OF OMEGA, ZTAGS IS THE INITIAL GUESS AT ZETA, ZTANSR IS
C THE SOLUTION, AND EPS IS THE TOLERANCE ON THE ANSWER.
C

C IF M.EQ.I., THIS SUBROUTINE RETURNS THE VALUE OF OMEGA (IN ZMGA)
C FOR A GIVEN VALUE OF ZETA (IN ZTAGS).
C

C IF M.EQ.2, THE QUANTITY RETURNED (IN ZTANSR) IS D OMEGA/D ZETA, FOR
C GIVEN VALUES OF OMEGA (IN ZMGA) AND ZETA (IN ZTAGS)
C

ISM 0005 ZI - DCMPLX(1.ODO,0.0DO)
ISM 0006 ZETA - ZTAGS
ISN 0007 NM - N - 1
ISN 0008 IT - 1
ISN 0009 5 CONTINUE
IS4 0010 ZSMA a DCMPLX(A(N),B(N))
ISN 0011 IF(M.EQ.1) GO TO 22
ISN 0013 ZSMB - ZSMA*DFLOAT(NM)
ISm 0014 IF(M.EQ.2) GO TO 40
ISN 0016 DO 10 J w 1,NM
ISM 0017 ZSMA - ZETA*ZSMA + DCMPLX(A(N-3),B(N-4))
ISN 0018 ZSMB a ZETA*ZSMB + DCMPLX(A(N"-),B(N-J))*DFLOAT(NM-3)
ISN 0019 10.CONTINUE
ISH 0020 ZEXP - CDEXP(ZSMA)
ISN 0021 ZG ZETA*ZEXP - ZMGA
ISM 0022 ZDG - ZEXP*(ZI + ZSMB)
ISM 0023 ZETOLD - ZETA
ism 0024 ZETA - ZETOLD - ZG/ZDG
ISM 0025 IF(CDABS(ZETA-ZETOLD).LT.EPS) GO TO 20
ISM 0027 IT - IT + 1
ISM 0028 IF(CDABS(ZETA).GT.1.ODO) ZETA a O.9D0ZETA/CDABS(ZETA)
ISM 0030 IF(IT.LE.50) GO TO 5
ISM 0032 M a 5
ISN 0033 RETURN
ISH 0034 20 ZTANSR - ZETA
ISN 0035 RETURN
ISM 0036 22 DO 21 3 - I,NM
ISN 0037 ZSMA = ZETA*ZSMA + DCMPLX(A(N-3),B(N-J))
ISN 0038 21 CONTINUE
ISN 0039 ZEXP - CDEXP(ZSMA)
ISN 0040 ZMGA - ZETA*ZEXP

i ISMi 0041 RETURN
ISN 0042 40 DO 41 3 - 1,NM
ISN 0043 41 ZSMB w ZETA*ZSMB + DCMPLX(A(N-3),B(N-J))*DFLOAT(NM-J)
ISM 0044 ZTANSR - ZMGA*(ZI+ZSMB)/ZTAGS
ISN 0045 RETURN
ISN 0046 END
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t I

' B- 23V 2

S-.-- -~ ---- ~ '



LEVEL 21.7 C DEC 72 ) OS/360 FORTRAN H

COMPILER OPTIONS - NAME= MAINOPT0O2,LINECNT.60,SIZE.OOOOK,
SOURCE,EBCDIC,NOLIST,NODECK,LOAD ,MAP,NOEDIT.IDXREF

ISN 0002 SUBROUTINE SHAPE(C,HG,EX,ZP.ZS,K3S,KJP)
ISN 0003 IMPLICIT REAL*B(A-H,O-Y).COMPLEX*16(Z)
IS4 0004 DIMENSION Za(80),ZP(80)
ISN 0005 DO 10 K - 1,KJS
ISM 0006 10 READ(5.100) ZS(K)
IS3 0007 DO 20 K a 1,KJP
ISM 0008 20 READ(5.100) ZP(K)
ISN 0009 100 FORMAT(9FI0.0)
ISN 0010 RETURN
ISN 0011 END

"LEhC 21-7-DEC fZ') ...-.- OS/360PFOTKAN ,

COMPILER OPTIONS - NAME= MAINOPT02,LINECNT*60,SIZEmOOOOK,
SOURCE EBCDIC,NOLIST,NODECK,LOAD,MAPNOEDIT.IDXREF

ISN 0002 SUBROUTINE SHUFL(NZAoZCC)
C
C THIS SUBROUTINE TAKES THE N COMPLEX VALUES IN ARRAY ZA. WHICH WERE
C COMPUTED AND STORED IN REVERSE BINARY ORDER BY FFT2 AND "SHUFFLES'
C THEM INTO PROPER ORDER USING ARRAY ZCC FOR INTERMEDIATE STORAGE.
C N IS ASSUMED TO HAVE THE FORM 2**M.
C

ISN 0003 IMPLICIT REAL*8(A-H,O-Y),COMPLEX-16(Z)
ISM 0004 DIMENSION ZA(65),ZCC(65).IAL(6),KR(64)
ISm 0005 DATA KALL/O/
ISm 0006 DATA IAL/6*0/
ISN 0007 IF (KALL.EQ.I) GO TO 10
IS"! 0001 KALL m 1
ISM'0010 DO 341 JP - 1,N
ISN 0011 J a JP - 1
ISN 0012 IAL(6) 3/32
ISN 0013 3 w 3 - 32*IAL(6)

ISM 0014 IAL(S) J 3/16
ISN 0015 3 o 3 - 16*IAL(5)
ISN 0016 IAL(4) 3/S
ISM 0017 3 w J - 8*IAL(4)

ISN 0018 IAL(3) a 3/4
ISm 0019 3 w 3 - 4*IAL(3)
ISN 0020 IAL(2) a J/2
ISm 0021 3 a 0 - 2*IAL(2)
ISN 0022 IAL(1) - 3
ISM 0023 341 KR(3P) -

32*IAL(I) 16*IAL(2) *SIAL(3)+4*IAL(4)*2IAL(5)+IAL(6)
ISN 0024 10 DO 342 3 - I,N
ISI 0025 342 ZCC(3) a ZA(KR(J) I)
ISN 0026 DO 360 JP a 1.N
ISN 0027 360 ZA(3P) * ZCC(3P)
ISN 0028 RETURN
ISN 0029 END
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LEVEL 21.7 ( DEC 72 ) OS/360 FORTRAN H

COMPILER OPTIONS - NAMEm MAINOPTuO2,LINECNT-60,SIZE-OOOOK.
SOURCEEBCDIC,NOLIST,NODECKLOAD,MAPNOEDIT, ID,XREF

ISN 000? SUBROUTINE THDGRK
C
C THIS SUBROUTINE MAPS AN OVAL TO A UNIT CIRCLE, USING A VARIANT OF
C THE THEODORSEN-GARRICK TRANSFORMATION AND FAST FOURIER TRANSFORM
C TECHNIQUES. (SEE REFERENCES AT BEGINNING OF MAIN PROGRAM).
C

ISN 0003 IMPLICIT REAL*8(A-H,O-Y),COMPLEX*16(Z)
ISM 0004 COMMON/TGINTG/N,NP1,NP2,N2,NB2,NB2PI,IP.IPMX,ITP,IWKIMXKJMX
ISM 0005 COMMON/TGCMPX/ZIZW2NZI,ZNN,ZA,ZCCZAI,ZA2
ISN 0006 COMMON/TGOBLE/PBN,OM,OMM,ANGERR,A,BE,F,THT,PHI,X,Y
ISN 0007 DIMENSION X(160),Y(160),E(150),F(150),THT(160)
ISN 0008 DIMENSION PHI(130).A(65),B(65),ZCC(65).

* ZA(165),ZAI(165),ZA2(165),
* IWK(7)

ISN 0009 DIMENSION ITP(100)

ISN 0010 301 DO 300 I a I.N2
ISN 0011 300 PHI(I)aPBN*DFLOAT(I-I)

C
C THE FOLLOWING CALSPAN LIBRARY ROUTINE PLACES A ZERO IN THE LOCATIONS
C FROM THE FIRST TO THE LAST ARGUMENT OF THE CALL. THE THIRD ARGUMENT
C GIVES THE LENGTH SPECIFICATION OF EACH ENTRY.
C

ISN 0012 CALL CLEAR(A(1),A(65),8)
ISM 0013 CALL CLEAR(B(I),B(65),B)
ISN 0014 CALL CLEAR(E(1),E(150),8)
ISm 0015 CALL CLEAR(ZCC(l),ZCC(65),16)

ISM 0016 WRITE(6,401)
ISN 0017 401 FORMAT(//IOX,'PROGRESS OF PHI / THETA ITERATIONS IS AS FOLLOWS:'//

I 3X,'IT',4X,'OEMX'.4X,'NO. OF THETA REVERSALS')

C

C FIRST GUESS IS THETA - THETA(TRAILING EDGE) - PHI
C

IS4 0019 DO 315 K - I.N2

ISN 0020 315 E(K) - X(I) + PHI(K)
ISN 0021 305 DEMX a O.ODO
ISN 0022 B(I) - O.ODO

C USE AJ AND BJ TO GET NEXT APPROXIMATION TO THETA1 C

ISl 0023 ZCC(I) a DCMPLX(B(I),O.ODO)
ISM 0024 DO 302 OP - 2,N

r ISN 0025 302 ZCC(3P) a DCMPLX(B(JP)/2.ODO,-A(JP)/2.ODO)
U ISN 0026 ZCC(NPI) a DCMPLX(O.ODO,O.ODO)

ISN 0027 ZW - Z1/ZW2N
ISN 0028 DO 303 NP a IoNB2PI
ISN 0029 ZA1(NP) - ZCC(NP) + DCONJG(ZCC(NP2-NP))
ISN 0030 ZW a ZW*ZW2N
ISN 0031 303 ZA2(NP) a ZW*(ZCC(NP)-DCONJG(ZCC(NP2-NP)))
ISN 0032 DO 304 NP a I.NB2PI
ISH 0033 304 ZA(NP) - ZAI(NP) ZI*ZA2(NP)
ISN 0034 DO 309 NP a 2.NB2
ISM 0035 309 ZA(NP2-NP) a

I
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* COrJG(ZA1CNP)) *ZI*DCONJG(ZAZ(NP))
ISN 0036 CALL FFT2(ZA,6,IWK)
ISN 0037 CALL SHUFL(NZA,ZCC)
ISN 0038 B(1) a X(1) - PHICI) - OREAL(ZA(l))
ISN 0039 DO 306 K a 1,64
ISN 0040 TMP a E(2*K-1)
ISN 0041 E(2*K-1) m DREAL(ZA(IC)) 4 PI4I(Z*K-1) * (1)
ISN 0042 THr(2*K-1) a E(2*K-1)
ISN 0043 DE14 a DASS(TMP-E(2*K-1))
ISN 0044 IF(DEM.GT.DEMX) DEMX n DEN
ISM 0046 E(2*K-1) a OM*E(2*K-1) *OMM*TMP
ISN 0047 TMP a E(2*K)
ISM 0048 E(2-k) a DINAG(ZA(K)) *PHI(2*K) + 8(1)
[SN 0049 TI4T(Z*K) -E(Z*K)
Is" 0050 OEM a DABS(TMP-E(2*K))
[SN 0051 IF(DEN.GT.DEMC) DENX - OEM
ISN 0053 E(2*K) a OM*E(2*K) + OMM*TMP
ISN 0054 306 CONTINUE
ISM 0055 IF(IT.NE.ITP(IP)) GO TO 840
ISN 0057 [P - [P + 1
ISu4 0058 WRITE(6,841) IT
ISN 0059 841 FORMAT(/3X,

* *THETA BEFORE AND AFTER RELAXATION AT IT - ,14)
ISN 0060 WRITEC 6,832)( THT( I), [aI 128)
ISM 0061 WRITE(6,832)(E(I ).I-1,128)
ISN 0062 932 FORMAT(1P1OE13.5)
ISN 0063 840 CONTINUE
ISM 0064 IF(IT.GE.ITP(IPMX)) STOP

C
C NOW USE THESE THFTAS TO GET THE NEXT APPROXIMATION TO LK R(K)
C

ISN 0066 CALL C[SPLN(Y,X,EoF,KJNX,2,128,I)
C
C NOW FIND THE AJ AND B.) COEFFICIENTS CORRESPONDING TO THE LN R(K) DATA
C

ISN 0067 DO 310 JP a 1,N
ISM 006a 310 ZA(JP) w DCMPLX(F(2*3P-1),F(*3P))
ISN 0069 DO 307 MP - 1,N
ISN 0070 307 ZA(NP) a DCONJG(ZA(NP))
ISN 0071 CALL FFT2(ZA,6,IWK)
ISN 0072 DO 308 JP a 1,N
ISN 0073 308 ZA(JP) a DCONJG(ZA(3P))/ZNN
ISN 0074 CALL SHUFL(N,ZA,ZCC)
ISN 0075 ZA(6S) a ZA(1)
ISN 0076 DO 311 NP w 1,NB2P1
ISN 0077 ZAI(NP) a (OCONJG(ZA(NP2-NP)) + ZA(NP))/2.ODO
ISN 0078 311 ZA2(NP) * ZI*(DCONJG(ZA(NP2-NP)) - ZA(NP))/2.ODO
ISN 0079 ZW a ZW2N
ISN 0090 DO 312 NP a 1,NB2Pl
ISN 0081 ZW * ZW/ZW2N
ISM 0O8Z 312 ZCC(NP) a (ZAI(NP)+ZA2(NP)ZW)/2.ODO
ISN 0083 ZV a ZI/ZW
ISN 0084 DO 313 1 a 2,NB2

ISM 0086 NP a N52 + I

ISM 009? ZIS a (ZA1(NP2-NP)*ZAZ(NP2-NP)*ZW)/2.ODO
ISN 0088 313 ZCC(NP) aDCONJC(ZSI)

[SN 0089 A(l) * REAL(ZCC(1))
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IISN 0090 ZCC(NP1)u0.5DO*DCONJG(ZAIC1)-ZA2(1))
ISN 0091 A(65) a DREAL(ZCC(65))
ISN 0092 DO 314 NP - 2,W
ISN 0093 A(NP) - 2.0DO*DREAL(ZCC(NP))
ISN 0094 314 B(NP) a 2.ODO*DIMAG(ZCC(NP))

CCEKFOR CONVERGENCE .: R

ISN 007NRV - 0
ISN 0098DO 809 LL - 2,128

ISN 0101WRITE(G.400) IT,DEMX,NRV
ISN012 00FORt4ATC 15,1PE 12 .3, IS)

ISN 0103 IF(DEMX.LT.ANGERR ) GO TO 316
ism 0105IT u IT + 1
ISN 0106IF(IT.LE.IMX) GO TO 305IS 00 WRITE(6,213)

ISN 0109 213 FORIATW//X.-ITERATIONS FOR A AND 8 DID NOT CONVERGE-)

ISN 0110 STOP

ism 0111 316 WRITE(6,203) IT,OM.DEMXIISN 0112 203 FORMAT(//10X,'A AND 8 ITERATIONS CONVERGED AT IT - ',13,
I USING ON - ',F6.3,' MAXIMUM ANGULAR ERROR ,
I PE12.3,' RADIANS')

ISN 0113 WRITE(6,220)
ISN 0114 220 FORMAT(// 4X.'K'.11X,'THETA'.ISX.PHI',//)
ISM 0115 DO 69 K - 1,129
ISN 0115 59 WRITE(6,221) K,E(K),PHI(K)
ISN 0117 221 FORMAT(15.1P2E20.6)

C
ism 0119 RETURN
ism 0119 END
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I Appendix C

fDICTIONARY OF VARIABLES

~ALGEBRAIC
FORTRAN SYMBOL EQUIVALENT DEFINITION, USE, COMMENTS

A(J), B(J) B' Eq. 2-20, 2-21

AK * =  Eq. 2-23

AKP A Eq. 2-30

AKQ _

ALM ( Eq. 2-31

Eq. 2-34

CAPKPM Eq. 2-34

DLT Eq. 2-28

DXIM, DXIR cdA4), Eq. 2-38, 4-4

EX /(a - L) See Figure 2
r

EXINV T-

I G, H ,H See Figure 1

HCPKPM K
• 4 I

OM Relaxation factor used in4 r b, 8 mapping

PBN

!" I PHI

SGA Eq. 2-31

SS Eqs. 2-23

TAU Eq. 2-28

c-1

C-4-



ALGEBRAIC
FORTRAN SYMBOL EQUIVALENT DEFINITION, USE, COMMENTS

TPI 2 7-

XIR, XIM

ZA(N) ,l nrt) Eq. A-9; used elsewhere
for temporary storage

ZB Eq. 2-9

3C Eq. 2-9

ZD 0. Eq.. 2-9

ZI

ZN, ZT, ZLE, ZTE 9 N Z.T See Figure 1

ZAL, ZBT, ZGM o., , , Eq. 2-22

ZAl(N), ZA2(N), ) (f z (rt) , See, for example, Eq.

ZCC(N) A-9. Also used for

C (PL) temporary storage

ZBOM -fl

ZBOMK K

ZEETA J7

ZETA -

ZNTRD centroid of the cO-plane

ZOMSTR A.- plane image of ZNTRO

zoms(K), ZoMP(K) WS,

ZPLUS, ZMINUS -L- a- Eq. 1-6

i P
ZXl

C-2
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Appendix D

LISTING OF METRIC GENERATOR PROGRAM

LEVEL 21.7 ( DEC 72 ) OS/360 FORTRAN H

COMPILER OPTIONS - NAME* MAIN,OPT-O2,LINECNTU6O,SIZESOOOOK,

P SOURCEEBCDIC,NOLIST.NODECK,LOADMAPNOEDIT,ID,XREF
C PROGRAM CIMTVL - A PROGRAM TO CALCULATE THE METRICS OF A COORDINATE
C TRANSFORMATION FOR TURBOMACHINERY CASCADES. FOR DOCUMENTATION,SEE:
C
C 0. P. NENNI AND W. J. RAE, EXPERIENCE WITH THE DEVELOPMENT OF
C AN EULER CODE FOR ROTOR ROWS, ASME PAPER 83-GT-36, MARCH 1983
C W. J. RAE, A COMPUTER PROGRAM FOR THE IVES TRANSFORMATION IN
C TURBOMACHINERY CASCADES, AFOSR TR-81-0154, ADA096416, NOV 1980
C W. J. RAE, MODIFICATIONS OF THE IVES-LIUTERMOZA CONFORMAL-
C MAPPING PROCEDURE FOR TURBOMACHINERY CASCADES, A!ME PAPER
C 83-GT-116, MARCH 1983
C W.3. RAE, REVISED COMPUTER PROGRAM FOR EVALUATING THE IVES
C TRANSFORMATION IN TURBOMACHINERY CASCADES, CALSPAN CORPORATION
C REPORT 7177-A-1, JULY 1983
C
C THE PROGRAM READS A CARD DECK CONTAINING THE COORDINATES X(K,L)
C Y(KL) t K a IKMX ; L a 1,LMX, AND FINDS BY FINITE DIFFERENCES
C THE METRICS OF A TRANSFORMATION TO A RECTANGLE(KSI,ETA). IN THIS
C RECTANGLE, THE IMAGE OF THE BLADE SURFACE LIES ALONG ONE SIDE, AND
C THE IMAGES OF THE POINTS AT INFINITY LIE AT CORNERS OF THE RECTANGLE
C (SEE THE REFERENCES ABOVE). THE METRICS ARE WRITTEN ON TAPE I.

ISN 0002 IMPLICIT REAL*8(A-H,O-Z)
ISs 0003 DIMENSION 0(410,6)
ISN O00 REA!(5,10O) KMX,LMX
ism 0005 100 FORfAT(2014)
S 0006 READ(5,101) SG
iSN 0007 101 FORMAT(SF10.4)

C
C SG IS THE SLANT GAP BETWEEN BLADES

ISN 0008 DO 10 K - I.KMX
ISm 0003 KMILMX w (K-I)*LMX
ISN 0010 LKA a KMILMX + I

| ISN 0011 LK3 - KMiLMX + LMX
ISN O012 10 READS,200)((Q(LK,5),Q(LK,6)),LK-LKA,LKB)
ISN 0013 200 FORMAT(IP4E20.13)

C 0(LK,5) CONTAINS X(KL), O(LK,6) CONTAINS Y(KL)
C

ISN 0014 KM=KMX-I
ISN 0015 LMwLMX-I

C
C --- SET X AND Y AT KmKMX AND L-I
C

IS" 0016 LK=KM*LMX+1
IS" 0017 Q(LK,5)wQ(I,5)
ISN 0018 Q(LK,6)mO(I,6)

C --- FIND X AND Y AT K1l AND L-LMX
C

iS;A 0019 Q(L;.X,S)=2DO*.2(LM,5)-Q(MX-2,S)
ISM 0020 Q(LMX,6)-2D0*Q(LM,6)-Q(LMX-2,6)

C
C --- FIND X AND Y AT K=KMX AND L=LMX
C

DI i,



ISN 0021 LK-KMX*LMX
ISN 0022 0(LK,5)=2D0*Q(LK-1,5)-Q(LK-2,5)
ISM 0023 QI(LK,6)i2DO0(LK-1,6)-Q(LK-2,6)
ISH 0024 TDELXI-4D0/DFLOAT(KM)
ISM 0025 TDELZTu2DO/DFLOAT(LM)

C
ISH 0026 DO 520 Ks1,KMX
ISN 0027 KN1LNX-(K-1)*LMX

ISN 0029 DO 510 L-1,LMX
ISM 0029 LK-KMILMX+L
ISN 0030 LPI-LK.1
INM 0031 LMI=LK-1
ISM 0032 KPI=LK.LMX
ISN 0033 KM41LK-LMX

ISN 0034 IF(L.EO.1) GO TO 504

ISH 0034 IF(K.EQ.lM) GO TO 501
ISM 0036 IF(L.EO.KM) GO TO 501
ISN 0040 IF(L.EO.LMX) GO TO 505

C
C -- K-2 TO KM AND L-2 TO LM (CENTERED DIFFERENCES)
C

ISM 0042 DXDXI-(Q(KPK.5)-Q(KM1,5))/TDELXI
ISME 0043 DYDXI-(O(KPI,6)-Q(KMI,6))/TDELXI
ISM 0044 DXDZTn(Q(LP1,5)-Q(LM1,5))/TDELZT
ISN 0045 DYDZT-(OQLPI,6)-Q(LMI,6))/TDELZT

C

ISM 0047 501 IF(1.EQ.1) GO TO 510
ISN 0049 IF(L.EQ.LMX) GO TO 510

CI
C -- Koi OR KMX AND L*2 TO LN
C

ISN 0051 1K2-LMX+L
ISM 0052 LKK?4m(KM-1)*LMXL
ISM 0053 DXDXI-(O(LK2,5)-O(LKKM,5))/TDELXIJ
ISN 0054 DYDXI=(Q(LK2,6)-Q(LKKM,6))/TDELXI
INM 0055 DXDZT-(O(LPI,5)-O(LMI,5))/TDELZT
INM 0056 DYDZTs(Q(LPI,6)-0(.MI,6))/TDELZT
ISN 0057 GO TO 509

C -- 1o AND Km2 TO KM
C

ISM 0056 504 LKIoKMILMX*1
ISM 0059 LK2nLK1.1
ISM 0060 LK3*LK2+1
IS" 0061 DXDZT-(-300*0(LK1,5)+400*0(LK2,5J-Q(LK3,5))/TOELZT
ISN 0062 DYDZT*(-3D0O(LK,6)4D*(LK2.6)-Q(LK3,6))/TDELZT
ISM 0063 GO TO 506

C
C -- LmLMX AND K=2 TO KM
C

IN 0064 505 LKSu(KMX-K)*LMX*LM
IN 0065 LKBuKI4LX*LH
ISME 0066 DXDZT-(Q(LKS.5)-Q(LKB,5))/TDELZT
IS 0067 DO-SQ
ISM 0063 IF(K.GT.KMXN) 00--SQ

D- 2



ISN 0070 DyDZTo(QO.LKS,6)+DQ-Q(LKB,6))/TDELZT
C

ISN 0071 506 DXD,I=(Q(KPI,5)-Q(KMI.5))/TDELXI
ISN 0072 DYDXl-(Q(KPI.6)-Q(KICM,6))/TDELXI

C
ISN 0073 509 RDMI=(DX0XI*DYDZT-DXDZT*DYDXI)

C
C STORE DERIVATIVES IN THE ORDER DKSI/DX,DKSI/DY,DETA/DXDETA/DY
C

ISN 0074 G(L'(.)-DVDZT/RDMI
ISNJ 0073 Q(LK,2)--DXDZT/RDMI
ISM 0076 GfLK.3)s-DYDXI/RD41
ISN 0077 Q(LK,4)- DXDXI/RDMI
ISN 0078 510 CONTINUE

*ISN 0079 520 CONTINUE
I C

C STORE DERIVATIVES ON TAPE I
C

ISN 0080 LKMX-LMX*KMX
C WRITE(1 ) KNXLMX.LKMX.((Q( I,JV,I*1.LKMX).3-1.4)
C

C
ISN 0067 STOP
ISN 0088 END

D-
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